Abstract:
A method and system for increasing fracture conductivity. A treatment slurry stage has a continuous first solid particulate concentration and a discontinuous anchorant concentration between anchorant-rich substages and anchorant-lean substages within the treatment slurry stage.
Abstract:
A method comprising moving a shifting tool in a first direction through a moveable member positioned in a casing of a wellbore, including moving the shifting tool through a shifting tool interface member (STIM) adjacent the moveable member, until the shifting tool is positioned past the moveable member and the STIM. The shifting tool is then moved in a second direction substantially opposite the first direction until the shifting tool and the STIM engage. The shifting tool is then further moved in the second direction, thereby moving the STIM and the moveable member in the second direction, until the STIM substantially simultaneously (1) engages the casing and (2) disengages the shifting tool.
Abstract:
A method and system for increasing fracture conductivity. A treatment slurry stage has a continuous first solid particulate concentration and a discontinuous anchorant concentration between anchorant-rich substages and anchorant-lean substages within the treatment slurry stage.
Abstract:
A method comprising moving a shifting tool in a first direction through a moveable member positioned in a casing of a wellbore, including moving the shifting tool through a shifting tool interface member (STIM) adjacent the moveable member, until the shifting tool is positioned past the moveable member and the STIM. The shifting tool is then moved in a second direction substantially opposite the first direction until the shifting tool and the STIM engage. The shifting tool is then further moved in the second direction, thereby moving the STIM and the moveable member in the second direction, until the STIM substantially simultaneously (1) engages the casing and (2) disengages the shifting tool.
Abstract:
A method for identifying low resistivity low contrast high temperature high pressure productive subsurface formations rich in acid gases penetrated by a wellbore includes obtaining dielectric permittivity measurements of selected formations adjacent at least part of the wellbore. Nuclear magnetic resonance relaxometry measurements are obtained for the selected formations, the relaxometry measurements being calibrated to identify relaxation times corresponding to acid gases in high humidity at elevated pressure and temperature. Zones are identified for withdrawing formation fluid samples based on the dielectric permittivity and relaxometry measurements.
Abstract:
Apparatus and method comprising a plurality of particles which are magnetically attracted to one another in response to exposure to a magnetic field, and which maintain attraction to one another after removal of the magnetic field, the attraction being disabled when the particles are demagnetized, whereby the particles operate to alter the rheological properties of a fluid in which the particles are mixed when the attraction is enabled or disabled is disclosed.