Abstract:
A method, apparatus, and program product generate a flow control device design for well completions in one or more wells of an oilfield in part by equipping a reservoir simulation model with multiple flow control device proxies represented by one or more generalized expressions for pressure drop including multiple tunable parameters associated with various physical flow control devices. Multiple reservoir simulations are then run using the reservoir simulation model to optimize an objective function based on at least a subset of the tunable parameters such that an optimal set of values determined from the optimization may be used to select flow control device types for the well completions.
Abstract:
One or more computer-readable media include computer-executable instructions to instruct a computing system to iteratively solve a system of equations that model a wellbore and fracture network in a reservoir where the system of equations includes equations for multiphase flow in a porous medium, equations for multiphase flow between a fracture and a wellbore, and equations for multiphase flow between a formation of a reservoir and a fracture. Various other apparatuses, systems, methods, etc., are also disclosed.
Abstract:
One or more computer-readable media include computer-executable instructions to instruct a computing system to iteratively solve a system of equations that model a wellbore and fracture network in a reservoir where the system of equations includes equations for multiphase flow in a porous medium, equations for multiphase flow between a fracture and a wellbore, and equations for multiphase flow between a formation of a reservoir and a fracture. Various other apparatuses, systems, methods, etc., are also disclosed.
Abstract:
A method for performing a modified two point flux approximation scheme is disclosed. The method includes: obtaining a first pressure value for a first neighbor cell and a second pressure value for a second neighbor cell, where the first neighbor cell has a first value of a reservoir property and the second neighbor cell as a second value of the reservoir property; determining a first weight using the first pressure value and a second weight using the second pressure value; calculating a third value of the reservoir property as a weighted average of the first value and the second value; and applying the third value to the first neighbor cell.
Abstract:
A method can include identifying a discrete natural fracture in a three-dimensional environment that includes a reservoir modeled by a three-dimensional grid model, representing the discrete natural fracture via a multisegment model in a two-dimensional region within the three-dimensional grid model, defining at least one connection for fluid communication between the multisegment model and the three-dimensional grid model, defining boundary conditions for the multisegment model, and solving the multisegment model subject to the at least one connection and the boundary conditions to provide values for fluid flow in the two-dimensional region. Various other apparatuses, systems, methods, etc., are also disclosed.
Abstract:
Methods of exploiting a formation containing a reservoir of hydrocarbons utilize a gas-liquid drift-flux (DF) model for a multi-segmented wellbore (MSW). The DF model is provided for use in conjunction with a reservoir simulator. The DF model is configured to account for pipe inclinations of the MSW between −90° and +90° including horizontal or near-horizontal wellbores in addition to vertical and slanted wellbores. The DF model is based on mixture velocity as opposed to superficial velocities, thereby permitting the DF model to be integrated with reservoir models that utilize mixture velocity. The DF model can also be continuous and differentiable over all primary variables.
Abstract:
A method for performing a modified two point flux approximation scheme is disclosed. The method includes: obtaining a first pressure value for a first neighbor cell and a second pressure value for a second neighbor cell, where the first neighbor cell has a first value of a reservoir property and the second neighbor cell as a second value of the reservoir property; determining a first weight using the first pressure value and a second weight using the second pressure value; calculating a third value of the reservoir property as a weighted average of the first value and the second value; and applying the third value to the first neighbor cell.
Abstract:
A method, apparatus, and program product to determine distribution of a plurality of components amongst a plurality of phases for a multi-component, multi-phase system including a multi-component, multi-phase fluid. A plurality of phase boundaries of the multi-component, multi-phase fluid and a vapor-liquid equilibrium (VLE) are determined based on a plurality of geophysical parameters associated with an oilfield and using one or more computer processors, including by determining hydrocarbon partitioning in a water phase, based in part on applying empirical equilibrium multi-phase mole fraction ratios (K-values) of the multi-component, multi-phase system that are functions of temperature and pressure only. In addition, an amount of at least one fluid component distributed in a plurality of phases of the multi-component, multi-phase system is predicted by solving a set of flash equations with the one or more computer processors based on the plurality of phase boundaries.
Abstract:
A method, apparatus, and program product to determine distribution of a plurality of components amongst a plurality of phases for a multi-component, multi-phase system including a multi-component, multi-phase fluid. A plurality of phase boundaries of the multi-component, multi-phase fluid and a vapor-liquid equilibrium (VLE) are determined based on a plurality of geophysical parameters associated with an oilfield and using one or more computer processors, including by determining hydrocarbon partitioning in a water phase, based in part on applying empirical equilibrium multi-phase mole fraction ratios (K-values) of the multi-component, multi-phase system that are functions of temperature and pressure only. In addition, an amount of at least one fluid component distributed in a plurality of phases of the multi-component, multi-phase system is predicted by solving a set of flash equations with the one or more computer processors based on the plurality of phase boundaries.
Abstract:
A method and an apparatus for managing a subterranean formation including collecting information about a flow control valve in a wellbore traversing the formation, adjusting the valve in response to the information wherein the adjusting includes a Newton method, a pattern search method, or a proxy-optimization method. In some embodiments, adjusting comprises changing the effective cross sectional area of the valve. A method and an apparatus for managing a subterranean formation including collecting information about an inflow control valve in a wellbore traversing the reservoir and controlling the valve, wherein the control includes a direct-continuous approach or a pseudo-index approach.