摘要:
A heat-resistant synthetic resin microporous film is provided which is excellent in both heat resistance and permeability to ions such as lithium ions and does not make its production line dirty. A method of producing the heat-resistant synthetic resin microporous film is also provided. The production method of a heat-resistant synthetic resin microporous film includes causing 5 to 25 parts by weight of a radical-polymerizable monomer including a trifunctional or higher polyfunctional acrylic monomer to adhere to 100 parts by weight of a synthetic resin microporous film, and then irradiating the synthetic resin microporous film with ionizing radiation at an absorbed dose of 10 to 150 kGy.
摘要:
The present invention provides a heat-resistant synthetic resin microporous film having good ion permeability and good heat resistance, and a method for producing the microporous film. The heat-resistant synthetic resin microporous film of the present invention includes a synthetic resin microporous film that has micropore parts, and a coating layer that is formed on at least part of the surface of the synthetic resin microporous film and contains a polymer of a polymerizable compound that has two or more radical-polymerizable functional groups per molecule. The heat-resistant synthetic resin microporous film has a maximum heat shrinkage rate, when heated from 25° C. to 180° C. at a rate of temperature increase of 5° C./min, of 25% or less.
摘要:
Provided are a heat-resistant synthetic resin microporous film having enhanced heat resistance while having reduced deterioration of mechanical strength, and a method for producing the same. Disclosed is a heat-resistant synthetic resin microporous film which includes a synthetic resin microporous film containing a synthetic resin; and a coating layer formed on at least a portion of the surface of the synthetic resin microporous film and containing a polymer of a polymerizable compound having a bifunctional or higher-functional radical polymerizable functional group, the heat-resistant synthetic resin microporous film having a surface aperture ratio of 30% to 55%, gas permeability of 50 sec/100 mL to 600 sec/100 mL, a maximum thermal shrinkage obtainable when the film is heated from 25° C. to 180° C. at a rate of temperature increase of 5° C./min, of 20% or less, and a piercing strength of 0.7 N or more.