Abstract:
A manufacturing method of a touch control display device is disclosed. The method includes forming a thin film transistor element layer; forming and patterning a common electrode layer on the thin film transistor element layer to form common electrodes, forming a third insulation layer on the common electrode and the thin film transistor element layer, forming and patterning a conversion layer on the third insulation layer to form conversion lines, and forming on a first via hole that exposes at least a portion of a gate line, and forming a second via hole that exposes at least a portion of the common electrode. Further, first conversion lines are electrically connected to the gate lines via the first via hole, and second conversion lines are electrically connected to the common electrode via the second via hole.
Abstract:
A drive circuit, an organic light-emitting diode display, and methods for fabricating the same are provided. The drive circuit includes: a driving transistor, including a first gate, a first semiconductor layer disposed above the first gate, an etch stopping layer disposed on the first semiconductor layer, and a first source and a first drain which are disposed on the two sides of the first semiconductor layer, the first semiconductor layer being made of oxide semiconductor material; and a switching transistor, including a second gate, a second semiconductor layer disposed above the second gate, and a second source and a second drain which are disposed on two sides of the second semiconductor layer, the second semiconductor layer being made of oxide semiconductor material. In the drive circuit, reliability and uniformity of the drive transistors are improved, and parasitic capacitance of the switching transistor decreases.
Abstract:
A flexible display panel and a display device are provided. The flexible display panel includes a flexible substrate, and an inorganic film layer located on the flexible substrate. The inorganic film layer includes a first portion and a second portion. The first portion is connected with the second portion, and the first portion has a first thickness T1. Further, the second portion has a second thickness T2, and T1
Abstract:
A display device is disclosed. The display device includes a first display substrate, an opposite substrate, and a sealing material forming a sealed area including a display area, where the sealing material is disposed between the first display substrate and the opposite substrate. The first display substrate includes a substrate and a flexible thin film, where the flexible thin film includes a first area entirely covering the display area, and a second area beyond the substrate. In addition, a first circuit is disposed on the first area, and a second circuit is disposed on the second area.
Abstract:
A thin-film transistor array substrate is disclosed. The array substrate includes a support substrate, a plurality of scan lines on the support substrate, and a plurality of data lines on the support substrate, where the plurality of scan lines are insulated and intersect with the plurality of data lines. The array substrate also includes a plurality of pixel units located near intersections of the scan lines and the data lines, a first metal layer on the support substrate, and an insulating layer on the first metal layer, where the insulating layer includes a plurality of via holes, each exposing a portion of the first metal layer. The array substrate also includes a semiconductor layer on the insulating layer and electrically connected to the first metal layer, and a second metal layer on the semiconductor layer and electrically connected to the semiconductor layer.
Abstract:
A drive circuit, an organic light-emitting diode display, and methods for fabricating the same are provided. The drive circuit includes: a driving transistor, including a first gate, a first semiconductor layer disposed above the first gate, an etch stopping layer disposed on the first semiconductor layer, and a first source and a first drain which are disposed on the two sides of the first semiconductor layer, the first semiconductor layer being made of oxide semiconductor material; and a switching transistor, including a second gate, a second semiconductor layer disposed above the second gate, and a second source and a second drain which are disposed on two sides of the second semiconductor layer, the second semiconductor layer being made of oxide semiconductor material. In the drive circuit, reliability and uniformity of the drive transistors are improved, and parasitic capacitance of the switching transistor decreases.