Abstract:
In this manufacturing method, in a blue fluorescent light-emitting layer formation step, a blue fluorescent light-emitting layer is formed in both a subpixel and a subpixel; in a green fluorescent light-emitting layer formation step, a green fluorescent light-emitting layer is formed in both the subpixel and a subpixel; and in a red light-emitting layer formation step, a red light-emitting layer is formed in both the subpixel and a subpixel. In at least two of the abovementioned steps, linear vapor deposition is performed using a slitted mask having an opening that is provided so as to extend across a plurality of pixels.
Abstract:
A blue fluorescent light-emitting layer is provided in common for a subpixel and a subpixel, a green fluorescent light-emitting layer is provided in common for the subpixel and a subpixel, and a red light-emitting layer is provided in common for the subpixel and a subpixel. An opposing surface distance is less than or equal to a Förster radius, and in the subpixel, the green fluorescent light-emitting layer and the red light-emitting layer are layered with a separation layer interposed therebetween.
Abstract:
Provided is an EL element utilizing upconversion light emission involving highly efficient triplet-triplet annihilation. A blue-light-emitting layer includes an ionic liquid, a red phosphorescent material, and a blue fluorescent material. The blue fluorescent material and the red phosphorescent material are homogeneously dispersed in a liquid film of the ionic liquid.
Abstract:
An organic electroluminescence device includes a base material including a recessed portion on a surface side, a reflective layer disposed at least on a surface of the recessed portion, a filling layer having optical transparency, the filling layer being disposed in the recessed portion through the reflective layer, a first electrode having optical transparency, the first electrode being disposed at least on an upper-layer side of the filling layer, an organic layer including at least a light emitting layer, the organic layer being disposed on an upper-layer side of the first electrode, and a second electrode having optical transparency and light reflectivity, the second electrode being disposed on an upper-layer side of the organic layer. The filling layer includes at least one type of phosphor.
Abstract:
An organic electroluminescence device according to one aspect of the present invention includes: a substrate; a thin film transistor provided above the substrate; a flattening layer provided above the thin film transistor and including a contact hole which is open on a side opposite to the substrate; a reflecting layer provided along at least a surface of the contact hole; a light-transmitting filling layer configured to fill an inside of the contact hole with the reflecting layer therebetween; and an organic EL element formed above the flattening layer and a contact hole top.
Abstract:
An organic electroluminescent element includes, in the following order: an anode; a hole transport layer; a first mixed light-emitting layer; a luminescent dopant layer; a second mixed light-emitting layer; an electron transport layer; and a cathode, the first mixed light-emitting layer containing a first luminescent host material and a first luminescent dopant material, the second mixed light-emitting layer containing a second luminescent host material and a second luminescent dopant material, the luminescent dopant layer consisting essentially only of a third luminescent dopant material and being thinner than the first mixed light-emitting layer and the second mixed light-emitting layer.
Abstract:
To provide a light-emitting device for achieving fluorescence emission with higher efficiency and longer life, a light-emitting device includes an exciton generation layer in which quantum dots are dispersed, a light-emitting layer in which light emitters, which are phosphors or phosphorescent members, are dispersed, the light-emitting layer adjoining the exciton generation layer in a vertical direction, a first electrode located on a lower side of the exciton generation layer and the light-emitting layer, and a second electrode located on an upper side of the exciton generation layer and the light-emitting layer, and the light emission spectrum of the quantum dots and the absorption spectrum of the light emitters at least partially overlap.
Abstract:
A blue fluorescent light-emitting layer is provided in common for first and second subpixels, a green fluorescent light-emitting layer is provided in common for second and third subpixels, and a red light-emitting layer is provided in common for the second and fourth subpixels. In the second subpixel, an opposing surface distance is less than or equal to a Förster radius, and at least of the blue fluorescent light-emitting layer and the green fluorescent light-emitting layer are layered with the red light-emitting layer with a separation layer interposed therebetween.
Abstract:
An organic EL element is provided that has a high light emission efficiency and that emits a plurality of light beams having respective wavelength ranges different from one another, the light beams including short wavelength light having a high chromaticity. An organic EL element (1) includes an exciton generating layer (7) and a guest layer (8) that are adjacent to each other.
Abstract:
An organic electroluminescence device according to one aspect of the disclosure includes a base material including a recessed portion on an upper face, and a light emitting element including a reflective layer, a filling layer having optical transparency, a first electrode having optical transparency, an organic layer including at least a light emitting layer, and a second electrode having optical transparency. The reflective layer is disposed at least on a surface of the recessed portion. The filling layer is disposed at an inside of the recessed portion with the reflective layer interposed between the recessed portion and the filling layer. The first electrode is disposed at least on an upper-layer side of the filling layer. The organic layer is disposed on an upper layer of the first electrode. The second electrode is disposed on an upper-layer side of the organic layer. The organic electroluminescence device includes a display region that is divided into a plurality of unit regions. The plurality of unit regions each having the light emitting element has a light emitting area and a transmissive area that are partitioned.