Abstract:
An in-vehicle charging control device may comprise a control module, a charging socket, and a switching circuit. The charging socket has a charging connection confirming terminal (CC) and a protective grounding terminal (PE). The switching circuit is connected with the charging connection confirming terminal (CC) and the protective grounding terminal (PE) of the charging socket. The control module is connected with an in-vehicle battery via the switching circuit. The charging socket matches with a charging plug. The switching circuit is in a conducting state when the charging plug is plugged in the charging socket and in a disconnection state when the charging plug is not plugged in the charging socket.
Abstract:
An energy conversion device is provided, including a motor coil (11), a bridge arm converter (12), and a bidirectional bridge arm (13). The bridge arm converter (12) is connected to the motor coil (11) and the bidirectional bridge arm (13). The motor coil (11), the bridge arm converter (12), and the bidirectional bridge arm (13) are all connected to an external charging port (10). Both the bridge arm converter (12) and the bidirectional bridge arm (13) are connected to an external battery 200. The motor coil (11), the bridge arm converter (12), and the external charging port (10) form a DC charging circuit for charging the external battery 200. The motor coil (11), the bridge arm converter (12), the bidirectional bridge arm (13), and the external charging port (10) form an AC charging circuit for charging the external battery (200). The motor coil (11), the bridge arm converter (12), and the external battery (200) form a motor drive circuit.
Abstract:
An energy conversion apparatus includes: an inductor, where a first end of the inductor is connected to an external charging port; a bridge arm converter, connected between an external battery and the external charging port, where the bridge arm converter includes a first phase bridge arm, a second phase bridge arm, and a third phase bridge arm connected in parallel, and a second end of the inductor is connected to the first phase bridge arm; a voltage transformation unit, where an input end of the voltage transformation unit is connected to the second phase bridge arm and the third phase bridge arm; and a first bidirectional H-bridge, connected between an output end of the voltage transformation unit and the external battery. The external battery is connected to and drives an external motor. The external charging port is connected to a power supply and charges the external battery.