Abstract:
A light source module comprises a substrate, light emitting components arranged in an array on the substrate, an internal wiring portion formed on the substrate and connected to the light emitting components, an external wiring portion formed on the substrate and isolated from the internal wiring portion, a first connecting unit formed on a first side of the substrate and connected to the external wiring portion and a second connection unit formed on a second side of the substrate and connected to the internal and the external wiring portion. The disclosure reduces the number of the leads required for the light source module when installing the light source module into the backlight module. The disclosure simplifies the assembly process, and reduces production costs. Further, the occupied areas of the leads in the backlight module are reduced to improve space utilization in the backlight module.
Abstract:
The present invention discloses an optical testing device includes a base, a holder, and a number of illuminating modules. The base defines a sliding groove extending along a first direction in a top surface thereof. The holder slides along a second direction on the top surface of the base. The interval regulator is connected to the holder. The illuminating modules are slidably received in the sliding groove. Each of the illuminating modules comprises a circuit board and a single lighting element set on the circuit board. The interval regulator drives the holder to slide along a second direction so that a distance between the holder and the illuminating modules is regulated. The first direction is not parallel to the second direction.
Abstract:
A white balance adjustment method for a display, the method including acquiring spectrum stimulus values of q gray scales of red, green, blue and white of a display panel of a tested display; determining spectrum stimulus value brightness of white and green, and performing interpolation segmenting on brightness of white and green; normalizing brightness of white and green; acquiring an ideal brightness normalized value of white and an ideal brightness normalized value of green; comparing the normalized value for brightness white and the ideal brightness normalized value corresponding to the white and the normalized value for brightness of green and the ideal brightness normalized value corresponding to the green respectively, based on the closest principle, and determining optimal gray scales of white and green; determining a target chromaticity, and changing the gray scales of red and blue, acquiring a RGBW combination which is closest to the target chromaticity.