Abstract:
A bicycle control device that includes a bracket configured to be mounted to a handlebar, a first lever pivotally mounted to the bracket and defining a first pivot axis, a second lever that includes a first user contact part pivotally mounted to the first lever that pivots about a second axis, and a first electrical switch mounted to one of the first lever and the second lever. The first electrical switch is operated in response to pivotal movement of the second lever about the second axis. The first pivot axis is positioned between the second pivot axis and the first user contact part.
Abstract:
A bicycle controller and bicycle drive device that improves the stability of the behavior of a bicycle. The bicycle controller includes an electronic control unit that reduces the output of a motor, which is configured to assist in propulsion of the bicycle, in accordance with an angular acceleration of a rotary body. The rotary body is included in a human power transmission path extending from an input for human power to a coupling portion coupled to a drive wheel.
Abstract:
A bicycle controller includes an electronic control unit that controls a transmission device. The transmission device is configured to change a ratio of a rotational speed of a wheel of a bicycle to a rotational speed of a crank of the bicycle, and a motor. The motor transmits torque to an upstream side of the transmission device in a transmission path of manual driving force that is input to the crank. The electronic control unit is configured to switch between a first mode that drives the motor in accordance with the manual driving force and a second mode that allows the motor to be driven to assist walking of the bicycle. The electronic control unit is configured to control a rotational speed of the motor in accordance with the ratio in the second mode.
Abstract:
A bicycle shifting apparatus comprises a shifting controller. The shifting controller is configured to control one of a front shifting device and a rear shifting device to change one of a front shift position and a rear shift position in response to a user input. The shifting controller is configured to control the other of the front shifting device and the rear shifting device to change the other of the front shift position and the rear shift position with a delay time period in conjunction with the one of the front shifting device and the rear shifting device in response to the user input. The shifting controller is configured to change the delay time period based on at least one of a gear ratio, the rear shift position, and a current rotational speed of a bicycle crank.
Abstract:
A human-powered vehicle control device includes an electronic controller that is configured to control an electric component of the human-powered vehicle in at least one control state selected from multiple control states that at least partially differ from each other. A number of the at least one control state is changeable. A human-powered vehicle control system includes the human-powered vehicle control device. Also, a method is carried out to set a control state of the human-powered vehicle control device.
Abstract:
A bicycle electrical component is basically provided with a wireless communication unit, a movable member, an electrical actuation unit and a support structure. The wireless communication unit includes a first housing and a wireless communication member that is contained within the first housing. The electrical actuation unit includes a second housing and an electrical actuator that is contained within the second housing. The electrical actuator is configured to actuate the movable member. The second housing is different from the first housing. The support structure detachably supports the wireless communication unit to the bicycle electrical component.
Abstract:
A bicycle shifting control apparatus comprises a transmission controller configured to control a guide actuator of a derailleur to move a chain guide of the derailleur between a plurality of shift positions in response to an input shifting signal. The transmission controller is configured to control, in a shifting operation of the chain guide between adjacent two shift positions of the plurality of shift positions, the guide actuator to temporarily decelerate the chain guide at a deceleration position defined between the adjacent two shift positions so that the bicycle chain engages with and/or disengages from one of the sprockets having a shift assist structure prior to completion of the shifting operation of the chain guide.
Abstract:
A bicycle magnetism generation device and a disc brake adapter are configured to allow a rotation state of a bicycle wheel to be detected in a suitable manner. The bicycle magnetism generation device includes a magnetism generator generating magnetism. In a state where the disc brake rotor is coupled to a hub of a bicycle, the bicycle magnetism generation device is at least partially arrangeable between the disc brake rotor and the hub.
Abstract:
A bicycle display device is configured to show an image on a display that is appropriate to a bicycle component, which is communicable with the bicycle display device. The bicycle display device is configured to be mounted on a bicycle. The bicycle display device includes a communication unit, a display and an electronic controller. The communication unit is communicably connected to a bicycle component that is mounted on the bicycle and configured to be actuated in multiple actuation modes. The display is configured to show an image related to the actuation modes of the bicycle component, which is one of different types of bicycle components. The electronic controller changes the image shown on the display in accordance with the type of the bicycle component communicably connected to the communication unit.
Abstract:
A bicycle drive unit includes a motor that assists propulsion of a bicycle and a wire operation device that operates a wire, which is connectable to a bicycle component.