Abstract:
A magnetic sensor includes: a non-magnetic substrate; and a sensitive element 31 having a longitudinal direction and a short direction, provided with uniaxial magnetic anisotropy in a direction crossing the longitudinal direction, and sensing a magnetic field by a magnetic impedance effect, wherein the sensitive element 31 includes plural soft magnetic material layers 105a to 105d and plural non-magnetic material layers 106a to 106c configured with a non-magnetic material and laminated between the plural soft magnetic material layers 105a to 105d, and the soft magnetic material layers 105a to 105d facing each other with each of the non-magnetic material layers 106a to 106c interposed therebetween are antiferromagnetically coupled.
Abstract:
Reduction of the S/N in an output from a magnetic sensor using the magnetic impedance effect is suppressed. A magnetic sensor 1 is provided with a sensitive element 31 including: plural soft magnetic material layers 105; and a nonmagnetic amorphous metal layer 106 provided between the plural soft magnetic material layers 105, wherein the soft magnetic material layers 105 facing each other with the nonmagnetic amorphous metal layer 106 interposed therebetween are antiferromagnetically coupled to sense a magnetic field by a magnetic impedance effect.
Abstract:
A magnetic sensor 1 includes: a non-magnetic substrate 10; and a sensitive element 30 disposed on the substrate 10. The sensitive element 30 has a longitudinal direction and a transverse direction and has a uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction. The sensitive element 30 is configured to sense a magnetic field by a magnetic impedance effect. The sensitive element 30 includes a soft magnetic material layer 101 made of an amorphous alloy based on Co and having a saturation magnetization of greater than or equal to 300 emu/cc and less than or equal to 650 emu/cc.
Abstract:
It is aimed at improving sensitivity of a magnetic sensor using the magnetic impedance effect. A magnetic sensor includes: a non-magnetic substrate; and a sensitive element including a soft magnetic material layer composed of an amorphous alloy with an initial magnetic permeability of 5,000 or more, the soft magnetic material layer being provided on the substrate, having a longitudinal direction and a short direction, being provided with uniaxial magnetic anisotropy in a direction crossing the longitudinal direction, and sensing a magnetic field by a magnetic impedance effect.
Abstract:
Reduction of the S/N in an output from a magnetic sensor using the magnetic impedance effect is suppressed. A magnetic sensor 1 is provided with a sensitive element 31 including: plural soft magnetic material layers 105; and a nonmagnetic amorphous metal layer 106 provided between the plural soft magnetic material layers 105, wherein the soft magnetic material layers 105 facing each other with the nonmagnetic amorphous metal layer 106 interposed therebetween are antiferromagnetically coupled to sense a magnetic field by a magnetic impedance effect.
Abstract:
Provided is a magnetic recording medium including a structure in which at least a soft magnetic underlayer, a non-magnetic intermediate layer, and a magnetic recording layer are sequentially laminated on a non-magnetic substrate, wherein the magnetic recording layer includes a first magnetic layer, a non-magnetic layer, and a second magnetic layer in order from the non-magnetic substrate side, has a structure in which the first magnetic layer and the second magnetic layer are magnetically separated from each other with the non-magnetic layer interposed therebetween, and consists of a plurality of patterns which are magnetically separated from each other, and the coercive force Hc of the second magnetic layer is larger than that of the first magnetic layer, and the coercive force Hc of the second magnetic layer is smaller than that of the first magnetic layer temporarily when the second magnetic layer is heated.
Abstract:
A perpendicular magnetic recording medium includes a nonmagnetic substrate, an underlayer provided above the nonmagnetic substrate, and a perpendicular recording layer provided above the underlayer. The perpendicular recording layer includes a first magnetic layer including Co and Pt and having a granular structure, and a second magnetic layer having magnetic and ferroelectric properties.
Abstract:
Sensitivity of a magnetic sensor using the magnetic impedance effect is improved. A magnetic sensor includes: a non-magnetic substrate; a sensitive element provided on the substrate, including a soft magnetic material, having a longitudinal direction and a short direction, provided with uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, and sensing a magnetic field by a magnetic impedance effect; and a protrusion part including a soft magnetic material and protruding from an end portion in the longitudinal direction of the sensitive element.
Abstract:
Sensitivity of a magnetic sensor using the magnetic impedance effect is improved. A magnetic sensor includes: a non-magnetic substrate; a sensitive element provided on the substrate, including a soft magnetic material, having a longitudinal direction and a short direction, provided with uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, and sensing a magnetic field by a magnetic impedance effect; and a protrusion part including a soft magnetic material and protruding from an end portion in the longitudinal direction of the sensitive element.
Abstract:
A magnetic sensor includes: plural sensitive elements 31 each including a soft magnetic material layer 105 having a longitudinal direction and a transverse direction and a conductor layer having higher conductivity than the soft magnetic material layer 105 and extending through the soft magnetic material layer 105 in a longitudinal direction, the sensitive element 31 having uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction and being configured to sense a magnetic field by a magnetic impedance effect; and a connecting portion 32 continuous with the conductor layer of the sensitive element and configured to connect transversely adjacent sensitive elements 31 in series.