Abstract:
An imprint apparatus includes a nozzle including a discharge outlet which discharges imprint material onto the substrate, a supply unit configured to supply a gas which accelerates filling of a pattern of a mold with the imprint material, and a gas unit provided with the nozzle. The gas unit performs gas supply or exhaust with respect to a second space around a first space between the nozzle and a portion of the substrate which faces the nozzle and is conveyed under the nozzle in order to suppress the gas from flowing into the first space.
Abstract:
The disclosed nanoimprinting method suppresses fluctuations in thickness of residual film and defects due to residual gas in a resist film, onto which a pattern of protrusions and recesses is transferred, in a nanoimprinting method that employs the ink jet method to coat a substrate with droplets of resist material. Droplets are coated onto a substrate such that the spaces between the droplets along an A direction which is substantially parallel to the direction of the lines of a linear pattern of protrusions and recesses are longer than the spaces between the droplets in a B direction which is substantially perpendicular to the A direction, in a nanoimprinting method that coats a substrate with the droplets of a resist material using the ink jet method.
Abstract:
This disclosure relates to a memory device that includes at least one magnetic track on a substrate, wherein the at least one magnetic track comprises one or more magnetic domains. Contacts can be disposed on the at least one magnetic track according to a predetermined arrangement to form a plurality of bitcells on the at least one magnetic track, wherein each one of the plurality of bitcells is configured to store at least one magnetic domain. The device can include a timing circuit connected to the contacts, with the timing circuit being configured to apply to the contacts multiple phases of electric currents according to a predetermined timing sequence to cause the at least one magnetic domain to shift from the each one of the plurality of bitcells to an adjacent one of the plurality of bitcells on the at least one magnetic track.
Abstract:
A magnetic recording medium includes a substrate; a lower base layer formed on the substrate; and a (001) oriented L10 magnetic layer formed on the lower base layer and including a first magnetic layer formed on the lower base layer and having a granular structure of magnetic grains and a grain boundary portion, the grain boundary portion containing C, and a second magnetic layer formed on the first magnetic layer and having a granular structure of magnetic grains and a grain boundary portion, the grain boundary portion containing oxide or nitride, the second magnetic layer further containing one or more elements selected from a group consisting of Mg, Ni, Zn, Ge, Pd, Sn, Ag, Re, Au and Pb as an additive.
Abstract:
In the systems and methods for synthesizing a thin film with desired properties (e.g. magnetic, conductivity, photocatalyst, etc.), a metal oxide film may be deposited on a substrate. The metal oxide film may be achieved utilizing any suitable method. A reducing agent may be deposited before, after or both before and after the metal oxide layer. Oxygen may be removed or liberated from the deposited metal oxide film by low temperature local or global annealing. As a result of the annealing to remove oxygen, one or more portions of the metal oxide may be transformed into materials with desired properties. As a nonlimiting example, a metal oxide film may be treated to provide a magnetic multilayer film that is suitable for bit patterned media.
Abstract:
The embodiments disclose a method of fabricating a stack, including replacing a metal layer of a stack imprint structure with an oxide layer, patterning the oxide layer stack using chemical etch processes to transfer the pattern image and cleaning etch residue from the stack imprint structure to substantially prevent contamination of the metal layers.
Abstract:
A method for fabricating a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) write apparatus is described. The HAMR write apparatus is coupled with a laser for providing energy and has a media-facing surface (MFS) configured to reside in proximity to a media during use. The method includes providing a stack on an underlayer. The stack includes an endpoint detection layer, an optical layer and an etchable layer. The optical layer is between the etchable and endpoint detection layers. The etchable layer is patterned to form a mask. A portion of the optical layer is removed. A remaining portion of the optical layer has a bevel at a bevel angle from the MFS location. The bevel angle is nonzero and acute. The NFT is provided such that the NFT has an NFT front surface adjoining the bevel and at the bevel angle from the MFS location.
Abstract:
According to embodiments of the present invention, a method of writing to an optical data storage medium is provided. The method includes receiving a plurality of data elements, each data element having one of a plurality of values, wherein each value of the plurality of values is associated with a wavelength, and forming, for each data element, a nanostructure arrangement on the optical data storage medium, the nanostructure arrangement configured to reflect light of the wavelength associated with the value of the data element in response to a light irradiated on the optical data storage medium. According to further embodiments of the present invention, a method of reading from an optical data storage medium and an optical data storage medium are also provided.
Abstract:
Provided herein is a method including forming a data zone guiding pattern and forming a servo zone guiding pattern. A servo pattern and a data pattern are simultaneously formed. Directed self-assembly of block copolymers is guided by the data zone guiding pattern and the servo zone guiding pattern.
Abstract:
The embodiments disclose a method including patterning a template substrate to have different densities using hierarchical block copolymer density patterns in different zones including a first pattern and a second pattern, using a first directed self-assembly to pattern a first zone in the substrate using a first block copolymer material, and using a second directed self-assembly to pattern a second zone in the substrate using a second block copolymer material.