Abstract:
Provided is composite carbon fibers comprising multi-walled carbon nanotubes wherein 99% by number or more of the multi-walled carbon nanotubes have a fiber diameter of not less than 5 nm and not more than 40 nm, carbon particles having a primary particle diameter of not less than 20 nm and not more than 100 nm and graphitized carbon nanofibers wherein 99% by number or more of the graphitized carbon nanofibers have a fiber diameter of not less than 50 nm and not more than 300 nm, wherein the multi-walled carbon nanotubes are homogeneously dispersed between the graphitized carbon nanofibers and the carbon particles.
Abstract:
A method for producing a negative electrode material for lithium ion secondary battery which includes: pressing a mixed liquid comprising particles (B) containing an element capable of occluding/releasing lithium ions, carbon nanotubes (C) of which not less than 95% by number have a fiber diameter of not less than 5 nm and not more than 40 nm, and water into a pulverizing nozzle of a high-pressure dispersing device to obtain a paste or slurry; drying the paste or slurry into a powder; and mixing the powder and carbon particles (A). A negative electrode material for lithium ion secondary battery including carbon particles (A); and flocculates in which particles (B) containing an element capable of occluding/releasing lithium ions and carbon nanotubes (C) of which not less than 95% by number has a fiber diameter of not less than 5 nm and not more than 40 nm are uniformly composited.
Abstract:
A method for producing an electrically conductive paste, including a step of manufacturing paste A by exerting a cavitation effect in mixed liquid A containing multi-walled carbon nanotubes and a solvent, a step of manufacturing paste B from mixed liquid B containing carbon black particles, graphitized carbon nanofibers and a solvent, and a step of mixing paste A and paste B.
Abstract:
A battery electrode is obtained by a method comprising: mixing active material (A), carbon fibers (B) having a fiber diameter of not less than 50 nm and not more than 300 nm, carbon fibers (C) having a fiber diameter of not less than 5 nm and not more than 40 nm, carbon black (D) and a binder (E) by dry process to obtain a mixture; to the mixture, adding not less than 5/95 and not more than 20/80 of a liquid medium by mass relative to the total mass of the active material (A), the carbon fibers (B), the carbon fibers (C), carbon black (D) and the binder (E); performing kneading while applying shear stress; and shaping the kneaded material into a sheet form.