Abstract:
A method for producing a negative electrode material for lithium ion secondary battery which includes: pressing a mixed liquid comprising particles (B) containing an element capable of occluding/releasing lithium ions, carbon nanotubes (C) of which not less than 95% by number have a fiber diameter of not less than 5 nm and not more than 40 nm, and water into a pulverizing nozzle of a high-pressure dispersing device to obtain a paste or slurry; drying the paste or slurry into a powder; and mixing the powder and carbon particles (A). A negative electrode material for lithium ion secondary battery including carbon particles (A); and flocculates in which particles (B) containing an element capable of occluding/releasing lithium ions and carbon nanotubes (C) of which not less than 95% by number has a fiber diameter of not less than 5 nm and not more than 40 nm are uniformly composited.
Abstract:
An object of the present invention is to provide a method for producing composite carbon fibers in which two or more carbon fibers are dispersed in a nearly homogenous state, the composite carbon fibers capable of being easily dispersed in a matrix such as a resin without leaving aggregate, and imparting low resistance. Disclosed is a method for producing composite carbon fibers, which comprises imparting a cavitation effect to slurry containing 6% by mass or less of two or more carbon fibers each having a different average fiber diameter under a pressure of 100 MPa or more and less than 245 MPa thereby to form a composite.
Abstract:
A positive electrode for lithium ion secondary batteries includes a current collector including a sheet-shaped conductive substrate and a coating layer disposed on one or both sides of the conductive substrate, and a positive electrode active material layer disposed on the coating layer, wherein the coating layer includes a powdery conductive material and a first binder, the positive electrode active material layer includes a positive electrode active material, a conductive auxiliary and a second binder, the void content in the positive electrode active material layer is 43 to 64%, and the difference represented by (Ra1−Ra2) is 0.10 to 0.40 μm wherein Ra1 is the surface roughness of the coating layer and Ra2 is the surface roughness of the surface of the conductive substrate covered by the coating layer.
Abstract:
A method for producing an electrically conductive paste, including a step of manufacturing paste A by exerting a cavitation effect in mixed liquid A containing multi-walled carbon nanotubes and a solvent, a step of manufacturing paste B from mixed liquid B containing carbon black particles, graphitized carbon nanofibers and a solvent, and a step of mixing paste A and paste B.
Abstract:
A battery electrode is obtained by a method comprising: mixing active material (A), carbon fibers (B) having a fiber diameter of not less than 50 nm and not more than 300 nm, carbon fibers (C) having a fiber diameter of not less than 5 nm and not more than 40 nm, carbon black (D) and a binder (E) by dry process to obtain a mixture; to the mixture, adding not less than 5/95 and not more than 20/80 of a liquid medium by mass relative to the total mass of the active material (A), the carbon fibers (B), the carbon fibers (C), carbon black (D) and the binder (E); performing kneading while applying shear stress; and shaping the kneaded material into a sheet form.
Abstract:
Particles (A) including an element capable of intercalating and deintercalating lithium ions, carbon particles (B) capable of intercalating and deintercalating lithium ions, multi-walled carbon nanotubes (C), carbon nanofibers (D) and optionally electrically conductive carbon particles (E) are mixed in the presence of shear force to obtain a composite electrode material. A lithium ion secondary battery is obtained using the above composite electrode material.
Abstract:
Provided is composite carbon fibers comprising multi-walled carbon nanotubes wherein 99% by number or more of the multi-walled carbon nanotubes have a fiber diameter of not less than 5 nm and not more than 40 nm, carbon particles having a primary particle diameter of not less than 20 nm and not more than 100 nm and graphitized carbon nanofibers wherein 99% by number or more of the graphitized carbon nanofibers have a fiber diameter of not less than 50 nm and not more than 300 nm, wherein the multi-walled carbon nanotubes are homogeneously dispersed between the graphitized carbon nanofibers and the carbon particles.
Abstract:
An object of the present invention is to provide composite carbon fibers in which multiwalled carbon nanotubes are homogeneously dispersed between graphitized carbon nanofibers and near the surface of the graphitized carbon nanofibers, the composite carbon fibers being capable of easily being dispersed in a matrix such as resin without leaving aggregates, and also imparting low resistance. Disclosed are composite carbon fibers comprising multiwalled carbon nanotubes having a fiber diameter of 5 nm or more and 30 nm or less and graphitized carbon nanofibers having a fiber diameter of 50 nm or more and 300 nm or less, wherein the multiwalled carbon nanotubes are homogeneously dispersed between the graphitized carbon nanofibers and near the surface of the graphitized carbon nanofibers.