Abstract:
A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 μm, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
Abstract:
A production method for a composite of fine particles (A) and carbon particles (B), including the steps of: mixing fine particles (A) formed of a substance comprising at least one kind of Si, Sn, Al, Ge and In; and molten pitch, to obtain a mixture (1); pulverizing the mixture (1) to obtain a pulverized product (2a); dry-mixing the pulverized product (2a) and carbon particles (B) to obtain a mixture (3a); and firing the mixture (3a), followed by pulverization; or including the steps of: adding carbon particles (B) to the mixture (1), followed by dry mixing and pulverizing, to obtain a pulverized product (2b); and firing the pulverized product (2b), followed by pulverization.
Abstract:
Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 μm or less, or the silicon-based domains are not at all agglomerated into agglomerates.
Abstract:
Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 μm or less, or the silicon-based domains are not at all agglomerated into agglomerates.
Abstract:
The present invention relates to a negative electrode material for a lithium ion battery, made of a composite material comprising silicon-containing particles, artificial graphite particles and a carbon coating layer, wherein the silicon-containing particles are silicon particles having a SiOx layer (0
Abstract:
Composite powder for use in an anode of a lithium ion battery, whereby the particles of the composite powder comprise silicon-based domains in a matrix, whereby the individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix, whereby the percentage of free silicon-based domains is lower than or equal to 4 weight % of the total amount of Si in metallic or oxidized state in the composite powder.
Abstract:
A rechargeable electrochemical cell comprising a negative electrode and a positive electrode is described. The positive electrode comprises a product having as overall formula Lip(NixMnyCozMmAlnAa)O2±b, wherein M signifies one or more elements from the group Mg, Ti, Cr, V and Fe, wherein A signifies one or more elements from the group F, C, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn, and wherein 0.9
Abstract:
A lithium ion battery comprising a negative electrode and an electrolyte, whereby the negative electrode comprises composite particles, whereby the composite particles comprise silicon-based domains, whereby the composite particles comprise a matrix material in which the silicon-based domains are embedded, whereby the composite particles and the electrolyte have an interface, whereby at this interface there is a SEI layer, characterized in that the SEI layer comprises one or more compounds having carbon-carbon chemical bonds and the SEI layer comprises one or more compounds having carbon-oxygen chemical bonds, whereby a ratio, defined as the area of a first peak divided by the area of a second peak, is at least 1.30, whereby the first peak and second peak are peaks in an X-ray photoelectron spectroscopy measurement of the SEI, whereby the first peak represents C—C chemical bonds and whereby the second peak represents C—O chemical bonds.
Abstract:
The invention relates to a powder comprising particles containing a core and a shell, said powder preferably having a surface area (BET) of at most 50 m2/g, said core containing silicon (Si) and said shell containing silicon oxide SiOx with 0
Abstract:
A powder for use in a negative electrode of a battery, said powder comprising particles, wherein the particles comprise a carbonaceous matrix material and silicon-based domains dispersed in the carbonaceous matrix material, wherein the particles further comprise pores wherein at least 1000 cross-sections of pores comprised in a cross-section of the powder satisfy optimized conditions of size and size distribution, allowing the battery containing such a powder to achieve a superior cycle life and a production method of such a powder.