Abstract:
In one example embodiment, a power storage management system includes a user terminal, a power storage apparatus and an information processing apparatus. In one example embodiment, the information processing apparatus is configured to, using a mobile communication network (e.g., Global System for Mobile Communications or the Universal Mobile Telecommunications System), communicate with the power storage apparatus.
Abstract:
In one example embodiment, a power storage management system includes a user terminal, a power storage apparatus and an information processing apparatus. In one example embodiment, the information processing apparatus is configured to, using a mobile communication network (e.g., Global System for Mobile Communications or the Universal Mobile Telecommunications System), communicate with the power storage apparatus.
Abstract:
There is provided an information processing apparatus including a control section which performs control of presenting, in association with each other, actual energy consumption representing an amount of energy consumed by a device in a case where a user performs any one of user actions, the user actions each being capable of being carried out by the user, and estimated energy consumption representing an amount of energy consumed by the device in a case where the user does not perform the user action.
Abstract:
In one example embodiment, a power storage management system includes a user terminal, a power storage apparatus and an information processing apparatus. In one example embodiment, the information processing apparatus is configured to, using a mobile communication network (e.g., Global System for Mobile Communications or the Universal Mobile Telecommunications System), communicate with the power storage apparatus.
Abstract:
There is provided a management apparatus for an electrical apparatus, the management apparatus including a communication unit configured to receive conduction state information from an electrical apparatus, a storage unit configured to store reference conduction state information of the electrical apparatus, and a determination unit configured to compare the conduction state information of the electrical apparatus with the reference conduction state information of the electrical apparatus to determine a state of the electrical apparatus.
Abstract:
Provided is a configuration for executing display information output control with improved visibility of a user wearable or portable display unit. A controller configured to execute display information output control on a user wearable or portable display unit is included. The controller sets a turning on (ON) period and a turning off (OFF) period and controls switching between afterimage consideration pulse display having the turning off period being set to be within an afterimage recognition period and normal pulse display having the turning off period being set to be longer than or equal to the afterimage recognition period, the turning on (ON) period being an output period of display information to the display unit, the turning off (OFF) period being a non-output period of display information to the display unit. The controller executes the switching control between the afterimage consideration pulse display and the normal pulse display depending on eye velocity of a user. The controller executes the afterimage consideration pulse display in a case where eye velocity of the user is less than a threshold and executes the normal pulse display in a case where the eye velocity is more than or equal to the threshold.