Abstract:
Provided is a phase locked loop circuit that includes: a phase comparison section configured to compare a phase of a first clock signal and a phase of a second clock signal; a loop filter configured to generate a control voltage based on a comparison result by the phase comparison section; and a clock signal generation section configured to generate a clock signal having a frequency corresponding to the control voltage, and output the clock signal as the second clock signal. The loop filter includes a first resistor inserted between a first node on a signal path and a second node, a first capacitor inserted between the second node and a first DC power supply, a first switch inserted between the second node and a third node on the signal path, and a second capacitor inserted between the third node and a second DC power supply.
Abstract:
A circuit includes first and second capacitances arranged on a first path that connects first and second terminals; a first switch arranged between the first capacitance and the second capacitance; a second switch arranged on a second path that connects a reference voltage section and a first node formed between the first capacitance and the first switch; a third switch arranged on a third path that connects the section and a second node formed between the second capacitance and the first switch; a first resistance arranged on a fourth path that connects the first node and a third node formed between the first terminal and the first capacitance; a second resistance arranged on a fifth path that connects the second node and a fourth node formed between the second terminal and the second capacitance; a fourth switch on the fourth path; and a fifth switch on the fifth path.
Abstract:
A circuit includes first and second capacitances arranged on a first path that connects first and second terminals; a first switch arranged between the first capacitance and the second capacitance; a second switch arranged on a second path that connects a reference voltage section and a first node formed between the first capacitance and the first switch; a third switch arranged on a third path that connects the section and a second node formed between the second capacitance and the first switch; a first resistance arranged on a fourth path that connects the first node and a third node formed between the first terminal and the first capacitance; a second resistance arranged on a fifth path that connects the second node and a fourth node formed between the second terminal and the second capacitance; a fourth switch on the fourth path; and a fifth switch on the fifth path.