Abstract:
The present technology provides a technology for stabilizing break-off timings. Therefore, according to the present technology, there is provided a microparticle analysis device or the like including at least: a flow path in which a fluid including a sample flow containing microparticles and a sheath flow flowing to contain the sample flow; a droplet formation unit configured to form a droplet in the fluid by imparting vibration to the fluid using a vibration element; an electric charge application unit configured to apply electric charge to a droplet containing the microparticles; an imaging unit configured to obtain a photo of a phase of a certain time; and a control unit configured to control a timing at which the droplet breaks off on a basis of the photo.
Abstract:
The present technology is mainly directed to providing a technology that enables smooth setting of sheath liquid. Provided is a fluid control device including at least a support portion that supports a sheath liquid storage unit and a sealed portion that houses the support portion. The support portion is detachable from the sealed portion, and the sealed portion is controlled by pressurization in order to feed sheath liquid stored in the sheath liquid storage unit to a microparticle measurement device.
Abstract:
A fluorescence intensity calculating apparatus, includes a measuring section configured to receive fluorescences generated from plural fluorescent dyes excited by radiating a light to a microparticle multiply-labeled with the plural fluorescent dyes having fluorescence wavelength bands overlapping one another by photodetectors which correspond to different received light wavelength bands, respectively, and whose number is larger than the number of fluorescent dyes, and obtain measured spectra by collecting detected values from the photodetectors, and a calculating section configured to approximate the measured spectra based on a linear sum of single-dyeing spectra obtained from the microparticle individually labeled with the fluorescent dyes, thereby calculating intensities of the fluorescences generated from the fluorescent dyes, respectively.
Abstract:
There is provided technology that enables a microparticle sorting device to be adjusted highly accurately without using adjustment beads. The present technology provides a microparticle sorting device including a light detection unit that optically detects a microparticle flowing through a flow path, a droplet forming unit that forms a droplet containing the microparticle, and a device adjustment unit that adjusts the device, in which, in a process of adjusting the device before actual measurement of the microparticle, the device adjustment unit performs optical axis position calibration for calibrating a relative position of the flow path relative to irradiation light and delay time calibration for calibrating a delay time from light irradiation to the microparticle to formation of the droplet on the basis of information obtained from the microparticle to be measured.
Abstract:
A fluorescent spectrum correcting method includes comparing fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments with reference spectrum to separating the fluorescent spectrum into fluorescent spectrum for each pigment, and previously measured spectrum data is used as the reference spectrum.
Abstract:
A fluorescence intensity calculating apparatus, includes a measuring section configured to receive fluorescences generated from plural fluorescent dyes excited by radiating a light to a microparticle multiply-labeled with the plural fluorescent dyes having fluorescence wavelength bands overlapping one another by photodetectors which correspond to different received light wavelength bands, respectively, and whose number is larger than the number of fluorescent dyes, and obtain measured spectra by collecting detected values from the photodetectors, and a calculating section configured to approximate the measured spectra based on a linear sum of single-dyeing spectra obtained from the microparticle individually labeled with the fluorescent dyes, thereby calculating intensities of the fluorescences generated from the fluorescent dyes, respectively.
Abstract:
A fluorescent spectrum correcting method includes comparing fluorescent spectrum obtained from micro-particles labeled with a plurality of fluorescent pigments with reference spectrum to separating the fluorescent spectrum into fluorescent spectrum for each pigment, and previously measured spectrum data is used as the reference spectrum.
Abstract:
Disclosed herein is a microparticle analyzing apparatus including a detecting portion configured to simultaneously detect a fluorescence generated from a microparticle in plural wavelength regions and a displaying portion configured to display thereon detection results in the plural wavelength regions in a form of a spectrum.
Abstract:
A fluorescence intensity calculating apparatus, includes a measuring section configured to receive fluorescences generated from plural fluorescent dyes excited by radiating a light to a microparticle multiply-labeled with the plural fluorescent dyes having fluorescence wavelength bands overlapping one another by photodetectors which correspond to different received light wavelength bands, respectively, and whose number is larger than the number of fluorescent dyes, and obtain measured spectra by collecting detected values from the photodetectors, and a calculating section configured to approximate the measured spectra based on a linear sum of single-dyeing spectra obtained from the microparticle individually labeled with the fluorescent dyes, thereby calculating intensities of the fluorescences generated from the fluorescent dyes, respectively.
Abstract:
The present technology provides a technology for stabilizing break-off timings. Therefore, according to the present technology, there is provided a microparticle analysis device or the like including at least: a flow path in which a fluid including a sample flow containing microparticles and a sheath flow flowing to contain the sample flow; a droplet formation unit configured to form a droplet in the fluid by imparting vibration to the fluid using a vibration element; an electric charge application unit configured to apply electric charge to a droplet containing the microparticles; an imaging unit configured to obtain a photo of a phase of a certain time; and a control unit configured to control a timing at which the droplet breaks off on a basis of the photo.