Abstract:
The present disclosure relates to an information processing device and information processing method capable of recognizing an acquisition position of voice data on an image. A web server transmits image frame size information indicating image frame size of image data and audio position information indicating acquisition position of voice data. The present disclosure is applicable to an information processing system or other like system including file generation device, web server, and video playback terminal to perform tiled streaming using a manner compliant with moving picture experts group phase-dynamic adaptive streaming over HTTP (MPEG-DASH).
Abstract:
A recognition processing section performs subject recognition in a processing area of an image obtained by an imaging section. The recognition processing section determines an image characteristic of the processing area on the basis of a characteristic map indicating an image characteristic of the image obtained by the imaging section and uses a recognizer corresponding to the image characteristic of the processing area. The characteristic map includes a map based on an optical characteristic of an imaging lens used in the imaging section and is stored in a characteristic information storage section. An imaging lens has a winder angle of view in all directions or in a predetermined direction than a standard lens, and the optical characteristic thereof differs depending on a position on the lens. The recognition processing section performs the subject recognition using a recognizer corresponding to resolution or skewness of the processing area, for example.
Abstract:
There is provided a control device including an image display unit configured to acquire, from a flying body, an image captured by an imaging device provided in the flying body and to display the image, and a flight instruction generation unit configured to generate a flight instruction for the flying body based on content of an operation performed with respect to the image captured by the imaging device and displayed by the image display unit.
Abstract:
The present technique relates to an encoding device and a method, a decoding device and a method, and a program capable of obtaining higher quality audio. An encoding unit encodes position information and a gain of an object in a current frame in multiple encoding modes. A compressing unit generates, for each combination of encoding modes of each pieces of position information and gains, encoded meta data including encoding mode information indicating the encoding modes and encoded data which are the encoded position information and gains, and compresses the encoding mode information included in the encoding meta data. A determining unit selects encoded meta data of which amount of data is the least from among the encoded meta data generated for each combination, thus determining the encoding mode of each pieces of position information and gains. The present technique can be applied to an encoder and a decoder.
Abstract:
The present technology relates to a neural network device capable of improving recognition performance. The neural network device includes a non-linear transformation layer processing unit that performs a transformation with a non-linear function having a learnable parameter. The present technology can be applied to a neural network.
Abstract:
There is provided a control device including an image display unit configured to acquire, from a flying body, an image captured by an imaging device provided in the flying body and to display the image, and a flight instruction generation unit configured to generate a flight instruction for the flying body based on content of an operation performed with respect to the image captured by the imaging device and displayed by the image display unit.
Abstract:
The present technique relates to an apparatus and a method for video-audio processing, and a program each of which enables a desired object sound to be more simply and accurately separated.A video-audio processing apparatus includes a display control portion configured to cause a video object based on a video signal to be displayed; an object selecting portion configured to select the predetermined video object from the one video object or among a plurality of the video objects; and an extraction portion configured to extract an audio signal of the video object selected by the object selecting portion as an audio object signal. The present technique can be applied to a video-audio processing apparatus.
Abstract:
The present technology relates to an information processing apparatus, an information processing method, and a program for achieving reduction of a processing load on a distribution side along with reduction of a transfer volume of information. The information processing apparatus includes an acquisition unit that acquires low accuracy position information having first accuracy and indicating a position of an object within a space where a user is located and acquires additional information for obtaining position information that has second accuracy higher than the first accuracy, indicates the position of the object within the space, and corresponds to a position of the user and a position information calculation unit that obtains the position information on the basis of the low accuracy position information and the additional information. The present technology is applicable to an information processing apparatus.
Abstract:
There is provided a control device including an image display unit configured to acquire, from a flying body, an image captured by an imaging device provided in the flying body and to display the image, and a flight instruction generation unit configured to generate a flight instruction for the flying body based on content of an operation performed with respect to the image captured by the imaging device and displayed by the image display unit.
Abstract:
There is provided an information processing apparatus to make it possible to dynamically change the blinking pattern of the light source according to the imaging result, the information processing apparatus including: a light source control unit configured to control each of light sources constituting a plurality of light sources that irradiate an eye with light; and an image acquisition unit configured to acquire a captured image of the eye including a bright spot that is a reflection point of the light. The light source control unit controls blinking of each of the light sources on a basis of the captured image of the eye.