Abstract:
The devices, methods, systems and computer-readable mediums of the present disclosure provide automatic data collection for insurance rating purposes. In particular, a battery powered Bluetooth device may be attached to a personal item of an insured individual. The Bluetooth device may automatically trigger a mobile telephone to begin storing data related to use of the personal item when the mobile telephone is proximate the Bluetooth device. The mobile telephone may periodically transmit the stored data to a remote server.
Abstract:
A system and method for determining a vehicle insurance premium for a period of time based at least in part on collected vehicle operation data, the system comprising: a mobile device, comprising: one or more sensors associated with the mobile device and configured to automatically collect vehicle operation data during a data collection session; a processor; a non-transitory storage medium; a display; a transmitter; and a set of computer readable instructions stored in the non-transitory storage medium and when executed by the processor configured to allow the mobile device to collect vehicle operation data and transmit the collected vehicle operation data; and a remote processing computer, comprising: a server that receives collected vehicle operation data; a database that stores collected vehicle operation data; and a rating engine that determines a vehicle insurance premium based at least in part on collected vehicle operation data.
Abstract:
The devices, methods, systems and computer-readable mediums of the present disclosure provide automatic data collection for insurance rating purposes. In particular, a battery powered Bluetooth device may be attached to a personal item of an insured individual. The Bluetooth device may automatically trigger a mobile telephone to begin storing data related to use of the personal item when the mobile telephone is proximate the Bluetooth device. The mobile telephone may periodically transmit the stored data to a remote server.
Abstract:
Methods and systems for communicating data with an electric vehicle are disclosed. According to some aspects, insurance risk related data associated with use of the electric vehicle may be collected and stored in one or more memories included in the electric vehicle. When the electric vehicle is connected to an electrical grid for charging a battery included in the electric vehicle, in some implementations, a power-line communication unit may transmit the insurance risk related data over the electrical grid to one or more remote computer systems. The insurance risk related data may be used by an insurer to calculate insurance rating data so that an insurance premium (or rate, discount, usage-based insurance, etc.) associated with the electric vehicle and/or its driver can be adjusted to more accurately reflect a risk of recognizable loss. The insurance risk data may be related to driving or driving behavior, and/or vehicle operation.
Abstract:
The devices, methods, systems and computer-readable mediums of the present disclosure provide automatic data collection for insurance rating purposes. In particular, a wireless transceiver device may be attached to a personal item of an insured individual. The wireless transceiver device may automatically trigger a mobile computing device to begin storing data related to use of the personal item when the mobile telephone is proximate the wireless transceiver device. The mobile telephone may periodically transmit the stored data to a remote server.
Abstract:
Client side and server side methods for combining data originating from an On Board Diagnostics (OBD) cap with data originating from a client computing device are presented. The method includes receiving, from a client computing device via a computer network, a plurality of OBD cap data originating from an OBD cap and receiving, from the client computing device via the computer network, a plurality of client computing device data originating from the client computing device. The method also includes selecting, at a processor, a first data parameter from the plurality of OBD cap data and selecting, at the processor, a second data parameter from the plurality of client computing device data. The method further includes analyzing, at the processor, the first data parameter and the second data parameter and flagging, at the processor, an insurance account associated with the OBD device as a result of the analysis.
Abstract:
A computer-implemented method includes detecting a plurality of faces within one or more images, and, for each of the plurality of faces, registering the face with a contact. The method further includes receiving a selection of one of the plurality of faces from a user, and, in response to the selection of the one of the plurality of faces, determining the contact associated with the selected one of the plurality of faces. Still further, the method includes retrieving information about the contact, and generating a list of selectable communication types to be displayed to the user on a display device.
Abstract:
The method, system, and computer-readable medium facilitates monitoring a vehicle operator during the course of vehicle operation to determine whether the vehicle operator is impaired (e.g., distracted, drowsy, intoxicated) and alerting the vehicle operator using a haptic alert delivered by a wearable computing device worn by the vehicle operator when impairment is detected. The method, system, and computer-readable medium may monitor the vehicle operator, the environment surrounding the vehicle, and/or forces acting on the vehicle using a variety of sensors, including optical sensors or accelerometers. In particular, optical sensors may monitor the vehicle operator to detect eye blinks, head nods, head rotations, and/or gaze fixation. Optical sensors may also monitor the road ahead of the vehicle to detect lane deviation, lane centering, and time to collision. Accelerometers may detect acceleration in the direction of vehicle travel and/or lateral acceleration.
Abstract:
Client side and server side methods for combining data originating from an On Board Diagnostics (OBD) cap with data originating from a client computing device are presented. The method includes receiving, from a client computing device via a computer network, a plurality of OBD cap data originating from an OBD cap and receiving, from the client computing device via the computer network, a plurality of client computing device data originating from the client computing device. The method also includes selecting, at a processor, a first data parameter from the plurality of OBD cap data and selecting, at the processor, a second data parameter from the plurality of client computing device data. The method further includes analyzing, at the processor, the first data parameter and the second data parameter and flagging, at the processor, an insurance account associated with the OBD device as a result of the analysis.
Abstract:
A method for providing vehicle operation data to a remote computer or server for calculation of a vehicle insurance premium for a period of time based at least in part on collected vehicle operation data, wherein the method includes steps of: collecting vehicle operation data via a mobile device while the mobile device is associated with an operating vehicle, wherein the vehicle operation data has insurance risk predictive power; and transmitting the collected vehicle operation data from the mobile device to a remote computer. The remote computer or server receives collected vehicle operation data, stores the collected vehicle operation data in a database, a determines a vehicle insurance premium via a rating engine based at least in part on collected vehicle operation data.