Abstract:
An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.
Abstract:
An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.
Abstract:
An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.
Abstract:
An integrated semiconductor heating assembly includes a semiconductor substrate, a chamber formed therein, and an exit port in fluid communication with the chamber, allowing fluid to exit the chamber in response to heating the chamber. The integrated heating assembly includes a first heating element adjacent the chamber, which can generate heat above a selected threshold and bias fluid in the chamber toward the exit port. A second heating element is positioned adjacent the exit port to generate heat above a selected threshold, facilitating movement of the fluid through the exit port away from the chamber. Addition of the second heating element reduces the amount of heat emitted per heating element and minimizes thickness of a heat absorption material toward an open end of the exit port. Since such material is expensive, this reduces the manufacturing cost and retail price of the assembly while improving efficiency and longevity thereof.
Abstract:
An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.