Abstract:
A differential or pseudo-differential TIA includes an auxiliary differential amplifier input transistor pair cross-coupled to the output nodes to cancel undesired output signal components. The advantages of a classical differential topology are retained while performance at a high data rate is significantly improved.
Abstract:
A modular hub driver architecture may include a multi-delay block configured to provide an enhanced delay match among N distinct stages of a distributed modulating electro-optical interface core. The electro-optical multi-core modulator driver may include an input impedance matching stage and a pre-conditioning circuit configured to generate a number M, an integer divisor of N, of delayed replicas of an electrical modulating signal. The electro-optical multi-core modulator may include an array of M launch buffers of the replica signals, and an array of M multi-delay blocks, each including delay circuit modules differently cascaded on distinct signal paths, and configured to receive, at respective inputs, the M replica signals and to output N/M differently delayed replicas of the input signals, each driving a correspondent output stage of one on the N electro-optical interface cores.
Abstract:
The differential trans-impedance amplifier uses trans-resistance(s) connected between the input nodes of a first differential amplifier, to implement a trans-impedance differential amplifier in a differential fashion and has two identical resistances, each connected between the photodiode and a respective DC voltage rail of a common bias network of the photodiode adapted to reverse bias the photodiode. The biasing resistances may be much larger than the trans-resistance(s) to prevent drawing any significant signal current from the photodiode. The amplifier may retain the advantages of a classical differential topology while effectively overcoming drawbacks that arise in high data rate applications.