COMPENSATION AND CALIBRATION FOR A LOW POWER BIO-IMPEDANCE MEASUREMENT DEVICE

    公开(公告)号:US20190285717A1

    公开(公告)日:2019-09-19

    申请号:US16429254

    申请日:2019-06-03

    Abstract: A method and apparatus for compensating and calibrating a bio-impedance measurement device are provided. In the method and apparatus, a memory stores a plurality of compensation parameters and a first detection channel receives a first detection signal, compensates the first detection signal using a first compensation parameter of the plurality of compensation parameters. In the method and apparatus, a second detection channel receives a second detection signal and a third detection signal and compensates the second and third detection signals using second and third compensation parameters of the plurality of compensation parameters and the compensated first detection signal. The impedance measurement device generates a first output signal representative of a first impedance measurement and a second output signal representative of a second impedance measurement based on the compensated first, second and third detection signals.

    Method of operating electro-acoustic transducers, corresponding circuit and device

    公开(公告)号:US11579273B2

    公开(公告)日:2023-02-14

    申请号:US17570120

    申请日:2022-01-06

    Abstract: A method of operating electro-acoustical transducers such as PMUTs involves applying to the transducer an excitation signal over an excitation interval, acquiring at the transducer a ring-down signal indicative of the ring-down behavior of the transducer after the end of the excitation interval, and calculating, as a function of said ring-down signal, a resonance frequency of the electro-acoustical transducer. A bias voltage of the electro-acoustical transducer can be controlled as a function of the resonance frequency. An acoustical signal received can be transduced into an electrical reception signal and a damping parameter of the electro-acoustical transducer can be calculated as a function of the ring-down signal so that a cross-correlation reference signal can be synthesized as a function of the resonance frequency and the damping ratio of the electro-acoustical transducer. Such a cross-correlation reference signal can be used for cross-correlation with the electrical reception signal to improve the reception quality.

    Wearable sensing device
    3.
    发明授权

    公开(公告)号:US11571157B2

    公开(公告)日:2023-02-07

    申请号:US16734264

    申请日:2020-01-03

    Abstract: A wearable sensing device includes a connector socket provided with contact pads connectable to sensing electrodes for sensing biological electrical signals. A supply module is provided with a battery, which is housed in a first casing configured for reversible coupling with the connector socket. A control module is housed in a second casing distinct from the first casing and configured for coupling with the supply module and with the connector socket. The control module is equipped with a processing unit configured to process biological electrical signals detectable through the contact pads. Mechanical-connection members couple the supply module to the connector socket. Electrical-connection members distinct from the mechanical-connection members are configured to connect the battery and the contact pads to the control module.

    Method of operating electro-acoustic transducers, corresponding circuit and device

    公开(公告)号:US11243299B2

    公开(公告)日:2022-02-08

    申请号:US16810042

    申请日:2020-03-05

    Abstract: A method of operating electro-acoustical transducers such as PMUTs involves applying to the transducer an excitation signal over an excitation interval, acquiring at the transducer a ring-down signal indicative of the ring-down behavior of the transducer after the end of the excitation interval, and calculating, as a function of said ring-down signal, a resonance frequency of the electro-acoustical transducer. A bias voltage of the electro-acoustical transducer can be controlled as a function of the resonance frequency. An acoustical signal received can be transduced into an electrical reception signal and a damping parameter of the electro-acoustical transducer can be calculated as a function of the ring-down signal so that a cross-correlation reference signal can be synthesized as a function of the resonance frequency and the damping ratio of the electro-acoustical transducer. Such a cross-correlation reference signal can be used for cross-correlation with the electrical reception signal to improve the reception quality.

    Compensation and calibration for a low power bio-impedance measurement device

    公开(公告)号:US10401465B2

    公开(公告)日:2019-09-03

    申请号:US15380597

    申请日:2016-12-15

    Abstract: A method and apparatus for compensating and calibrating a bio-impedance measurement device are provided. In the method and apparatus, a memory stores a plurality of compensation parameters and a first detection channel receives a first detection signal, compensates the first detection signal using a first compensation parameter of the plurality of compensation parameters. In the method and apparatus, a second detection channel receives a second detection signal and a third detection signal and compensates the second and third detection signals using second and third compensation parameters of the plurality of compensation parameters and the compensated first detection signal. The impedance measurement device generates a first output signal representative of a first impedance measurement and a second output signal representative of a second impedance measurement based on the compensated first, second and third detection signals.

    Method and circuit for operating electro-acoustic transducers for reception and transmission using ring-down parameters

    公开(公告)号:US11696072B2

    公开(公告)日:2023-07-04

    申请号:US17517273

    申请日:2021-11-02

    Inventor: Marco Passoni

    CPC classification number: H04R3/04 G01H11/08 G01H13/00

    Abstract: An electro-acoustical transducer such as a Piezoelectric Micromachined Ultrasonic Transducers is coupled with an adjustable load circuit having a set of adjustable load parameters including resistance and inductance parameters. Starting from at least one resonance frequency or at least one ring-down parameter of the electro-acoustical transducer a set of model parameters is calculated for a Butterworth-Van Dyke (BVD) model of the electro-acoustical transducer. The BVD model includes an equivalent circuit network having a constant capacitance coupled to a RLC branch and the adjustable load circuit is coupled with the electro-acoustical transducer at an input port of the equivalent circuit network of the model of the electro-acoustical transducer. The adjustable load parameters are adjusted as a function of the set of model parameters calculated for the BVD model of the electro-acoustic transducer to increase the bandwidth or the sensitivity of the electro-acoustic transducer.

    Compensation and calibration for a low power bio-impedance measurement device

    公开(公告)号:US10758152B2

    公开(公告)日:2020-09-01

    申请号:US16429254

    申请日:2019-06-03

    Abstract: A method and apparatus for compensating and calibrating a bio-impedance measurement device are provided. In the method and apparatus, a memory stores a plurality of compensation parameters and a first detection channel receives a first detection signal, compensates the first detection signal using a first compensation parameter of the plurality of compensation parameters. In the method and apparatus, a second detection channel receives a second detection signal and a third detection signal and compensates the second and third detection signals using second and third compensation parameters of the plurality of compensation parameters and the compensated first detection signal. The impedance measurement device generates a first output signal representative of a first impedance measurement and a second output signal representative of a second impedance measurement based on the compensated first, second and third detection signals.

Patent Agency Ranking