Abstract:
A method for controlling an IC having logic cells and a clock-tree cell. Each logic cell has first and second FETs, which are pMOS and nMOS respectively. The clock-tree cell includes third and fourth FETs, which are pMOS and nMOS respectively. The clock-tree cell provides a clock signal to the logic cells. A back gate potential difference (“BGPD”) of a pMOS-FET is a difference between its source potential less its back-gate potential, and vice versa for an nMOS-FET. The method includes applying first and second back gate potential difference (BGPD) to a logic cell's first and second FETs and either applying a third BGPD to a third FET, wherein the third BGPD is positive and greater than the first BGPD applied, which is applied concurrently, or applying a fourth BGEPD to a fourth FET, wherein the fourth BGPD is positive and greater than the second BGPD that is applied concurrently.
Abstract:
A first circuit includes a first chain of identical stages defining first and second delay lines. A second circuit includes a second chain of identical stages defining third and fourth delay lines. The stages of the second chain are identical to the stages of the first chain. A third circuit selectively couples one of the third delay line, the fourth delay line, or a first input of the third circuit to an input of the first circuit.
Abstract:
A method for controlling an IC having logic cells and a clock-tree cell. Each logic cell has first and second FETs, which are pMOS and nMOS respectively. The clock-tree cell includes third and fourth FETs, which are pMOS and nMOS respectively. The clock-tree cell provides a clock signal to the logic cells. A back gate potential difference (“BGPD”) of a pMOS-FET is a difference between its source potential less its back-gate potential, and vice versa for an nMOS-FET. The method includes applying first and second back gate potential difference (BGPD) to a logic cell's first and second FETs and either applying a third BGPD to a third FET, wherein the third BGPD is positive and greater than the first BGPD applied, which is applied concurrently, or applying a fourth BGEPD to a fourth FET, wherein the fourth BGPD is positive and greater than the second BGPD that is applied concurrently.
Abstract:
Absorbed ionizing particles differentially effect first and second acquiring circuit stages configured to respectively generate first and second acquisition signals. Each acquisition signal has a characteristic that is variable as a function of an amount of absorbed ionizing particles. A measuring circuit generates, on the basis of the first and second acquisition signals, a relative parameter indicative of a relationship between the variable characteristics. A computation of a total ionizing dose is made using a 1st- or 2nd-degree polynomial relationship in the relative parameter.
Abstract:
A device may include a control circuit configured to place, after a normal mode operation of N flip-flops, the N flip-flops in a test mode in which the test input of the first flip-flop of the chain is intended to receive a first sequence of test bits A memory may be configured to store a sequence of N values delivered by the test output of the last flip-flop of the chain. The control circuit may be configured to deliver, at the test input of the first flip-flop of the chain, the sequence of N stored values to restore the state of the N flip-flops before their placement in the test mode.
Abstract:
A method for managing operation of a logic component is provided, with the logic component including a majority vote circuit and an odd number of flip-flops equal to at least three. The method includes, following a normal operating mode of the logic component, placing a flip-flop in a test mode, and injecting a test signal into a test input of the flip-flop being tested while a logic state of the other flip-flops is frozen. A test signal output is analyzed. At the end of the test, the logic component is placed back in the normal operating mode. The majority vote circuit restores a value of the output signal from the logic component that existed prior to initiation of the test.