Abstract:
In an embodiment a differential pair for an input stage includes two identical branches in parallel, each branch including a first MOS transistor and a second MOS transistor arranged in series, wherein the first transistor and the second transistor have a channel of the same type, and wherein each of the first transistor and the second transistor has a gate coupled to the same corresponding input of the differential pair and a circuit configured to apply to each of the first transistors a potential difference between a source and a channel-forming region of the first transistor.
Abstract:
A switching circuit a multiplexer includes an NMOS switch module and a PMOS switch module connected in parallel between an input and an output. A first control module powered from a first power supply voltage operates to reduce leakage currents of the NMOS switching module when in the non-conducting state. A second control module powered from a second power supply voltage operates to reduce leakage currents of the PMOS switching module when in the non-conducting state. A voltage selection circuit is configured to deliver a voltage as the second power supply voltage equal to the greater of the first power supply voltage and the voltages present at the input and at the output.
Abstract:
An analog multiplexer includes inputs and one output. A switching circuit is coupled between each input and the output. Each switching circuit includes an NMOS switching module, having an on state and an off state, and a control module supplied by a first supply voltage and operating to reduce leakage currents of the NMOS switching module when in the off state. The control module further operates to make the first NMOS switching module bidirectional irrespective of voltages present at the input and at the output.
Abstract:
A switching circuit a multiplexer includes an NMOS switch module and a PMOS switch module connected in parallel between an input and an output. A first control module powered from a first power supply voltage operates to reduce leakage currents of the NMOS switching module when in the non-conducting state. A second control module powered from a second power supply voltage operates to reduce leakage currents of the PMOS switching module when in the non-conducting state. A voltage selection circuit is configured to deliver a voltage as the second power supply voltage equal to the greater of the first power supply voltage and the voltages present at the input and at the output.
Abstract:
A differential pair for an input stage includes two identical branches in parallel, each branch including a first MOS transistor and a second MOS transistor arranged in series, wherein the first transistor and the second transistor have a channel of the same type, and wherein each of the first transistor and the second transistor has a gate coupled to the same corresponding input of the differential pair and a circuit configured to apply to each of the first transistors a potential difference between a source and a channel-forming region of the first transistor.
Abstract:
An analog multiplexer includes inputs and one output. A switching circuit is coupled between each input and the output. Each switching circuit includes an NMOS switching module, having an on state and an off state, and a control module supplied by a first supply voltage and operating to reduce leakage currents of the NMOS switching module when in the off state. The control module further operates to make the first NMOS switching module bidirectional irrespective of voltages present at the input and at the output.
Abstract:
An analog multiplexer includes inputs and one output. A switching circuit is coupled between each input and the output. Each switching circuit includes an NMOS switching module, having an on state and an off state, and a control module supplied by a first supply voltage and operating to reduce leakage currents of the NMOS switching module when in the off state. The control module further operates to make the first NMOS switching module bidirectional irrespective of voltages present at the input and at the output.
Abstract:
An analog multiplexer includes inputs and one output. A switching circuit is coupled between each input and the output. Each switching circuit includes an NMOS switching module, having an on state and an off state, and a control module supplied by a first supply voltage and operating to reduce leakage currents of the NMOS switching module when in the off state. The control module further operates to make the first NMOS switching module bidirectional irrespective of voltages present at the input and at the output.
Abstract:
An amplifier includes a pair of transistors connected in a differential stage, and a bias current source connected to a common node of the differential stage. A slew-rate compensation circuit is configured to derive from the common node a dynamic compensation current during a phase in which the voltage of the common node varies.