Abstract:
In an embodiment, a method for performing scan includes: entering scan mode; receiving a test pattern; applying the test pattern through a first scan chain by asserting and deasserting a scan enable signal to respectively perform shift and capture operations to the first scan chain; while applying the test pattern through the first scan chain, controlling a further scan flip-flop with the first scan chain without transitioning a further scan enable input of the further scan flip-flop; and evaluating an output of the first scan chain to detect faults.
Abstract:
A logic built-in self-test (LBIST) circuit implements a pipeline scan enable launch on shift (LOS) feature. A first scan chain flip-flop has a scan enable input configured to receive a first scan enable signal. A logic circuit has a first input coupled to a data output of the first scan chain flip-flop and a second input coupled to receive the first scan enable signal. A second scan chain flip-flop has a scan input coupled to a scan output of the first scan chain flip-flop. A scan enable input of the second scan chain flip-flop is coupled to receive a second scan enable signal generated at an output of the logic circuit. The first and second scan chain flip-flops are clocked by a same clock signal.
Abstract:
In an embodiment, a method for performing scan includes: entering scan mode; receiving a test pattern; applying the test pattern through a first scan chain by asserting and deasserting a scan enable signal to respectively perform shift and capture operations to the first scan chain; while applying the test pattern through the first scan chain, controlling a further scan flip-flop with the first scan chain without transitioning a further scan enable input of the further scan flip-flop; and evaluating an output of the first scan chain to detect faults.
Abstract:
A logic built-in self-test (LBIST) circuit implements a pipeline scan enable launch on shift (LOS) feature. A first scan chain flip-flop has a scan enable input configured to receive a first scan enable signal. A logic circuit has a first input coupled to a data output of the first scan chain flip-flop and a second input coupled to receive the first scan enable signal. A second scan chain flip-flop has a scan input coupled to a scan output of the first scan chain flip-flop. A scan enable input of the second scan chain flip-flop is coupled to receive a second scan enable signal generated at an output of the logic circuit. The first and second scan chain flip-flops are clocked by a same clock signal.
Abstract:
A system and method for testing an integrated circuit using methodologies to reduce voltage drop during ATPG and LBIST testing. In one embodiment, delay elements may be added to a clock circuit used to generate the various clock signals that trigger the switching of the various electronic components. In another embodiment, logic circuitry may be added to a clock generation circuit to isolate clock domains in order to enable a clock signal in each clock domain in a specific pattern. In yet another embodiment, capture phases for LBIST testing may be made to be asynchrounous within each capture phase, such that data capture for one LBIST partition may be timed different from other capture phases for other LBIST partitions. Finally, a further embodiment ATPG circuitry may also be partitioned such that logic circuitry only enables one (or less than all) ATPG partition at a time.
Abstract:
In an embodiment, a method for performing scan includes: entering scan mode; receiving a test pattern; applying the test pattern through a first scan chain by asserting and deasserting a scan enable signal to respectively perform shift and capture operations to the first scan chain; while applying the test pattern through the first scan chain, controlling a further scan flip-flop with the first scan chain without transitioning a further scan enable input of the further scan flip-flop; and evaluating an output of the first scan chain to detect faults.
Abstract:
Described herein are integrated circuit chips having test circuitry designed such that independently selectable testing of different power domains using a same scan chain compressor-decompressor circuit may be performed. Also disclosed herein are integrated circuit chips having test circuitry designed such that independently selectable testing of different power domains using multiple different scan chain compressor-decompressor circuits may be performed.