Abstract:
A MOS transistor for power applications is formed in a substrate of semiconductor material by a method integrated in a process for manufacturing integrated circuits which uses an STI technique for forming insulating regions. The method includes the phases of forming an insulating element on a top surface of the substrate and forming a control electrode on a free surface of the insulating element. The insulating element insulates the control electrode from the substrate. The insulating element includes a first portion and a second portion. The extension of the first portion along a first direction perpendicular to the top surface is lower than the extension of the second portion along such first direction. The phase of forming the insulating element includes generating the second portion by locally oxidizing the top surface.
Abstract:
A MOS transistor includes a semiconductor layer with a drain region and a body region. A first insulating layer is disposed over the semiconductor layer, a gate-precursor layer is disposed over the first insulating layer, a second insulating layer disposed over the first insulating layer and a third insulating layer disposed over the second insulating layer. A source opening extends through the third insulating layer, the second insulating layer, the gate-precursor layer, and the first insulating layer. An implant through the source opening forms a source-precursor region in the semiconductor layer. The source opening is then lined and an body contact opening is made through the liner, the source-precursor region and into the body region. An implant through the body contact opening forms the body contact region below the source-precursor. The body contact opening is then filled with a metal.
Abstract:
A MOS transistor includes a semiconductor layer with a drain region and a body region. A first insulating layer is disposed over the semiconductor layer, a gate-precursor layer is disposed over the first insulating layer, a second insulating layer disposed over the first insulating layer and a third insulating layer disposed over the second insulating layer. A source opening extends through the third insulating layer, the second insulating layer, the gate-precursor layer, and the first insulating layer. An implant through the source opening forms a source-precursor region in the semiconductor layer. The source opening is then lined and an body contact opening is made through the liner, the source-precursor region and into the body region. An implant through the body contact opening forms the body contact region below the source-precursor. The body contact opening is then filled with a metal.