Aerogel-based electrodes
    2.
    发明授权

    公开(公告)号:US11569499B2

    公开(公告)日:2023-01-31

    申请号:US16697220

    申请日:2019-11-27

    申请人: StoreDot Ltd.

    摘要: Electrodes, production methods and mono-cell batteries are provided, which comprise active material particles embedded in electrically conductive metallic porous structure, dry-etched anode structures and battery structures with thick anodes and cathodes that have spatially uniform resistance. The metallic porous structure provides electric conductivity, a large volume that supports good ionic conductivity, that in turn reduces directional elongation of the particles during operation, and may enable reduction or removal of binders, conductive additives and/or current collectors to yield electrodes with higher structural stability, lower resistance, possibly higher energy density and longer cycling lifetime. Dry etching treatments may be used to reduce oxidized surfaces of the active material particles, thereby simplifying production methods and enhancing porosity and ionic conductivity of the electrodes. Electrodes may be made thick and used to form mono-cell batteries which are simple to produce and yield high performance.

    AEROGEL-BASED ELECTRODES
    3.
    发明申请

    公开(公告)号:US20200235387A1

    公开(公告)日:2020-07-23

    申请号:US16697220

    申请日:2019-11-27

    申请人: StoreDot Ltd.

    摘要: Electrodes, production methods and mono-cell batteries are provided, which comprise active material particles embedded in electrically conductive metallic porous structure, dry-etched anode structures and battery structures with thick anodes and cathodes that have spatially uniform resistance. The metallic porous structure provides electric conductivity, a large volume that supports good ionic conductivity, that in turn reduces directional elongation of the particles during operation, and may enable reduction or removal of binders, conductive additives and/or current collectors to yield electrodes with higher structural stability, lower resistance, possibly higher energy density and longer cycling lifetime. Dry etching treatments may be used to reduce oxidized surfaces of the active material particles, thereby simplifying production methods and enhancing porosity and ionic conductivity of the electrodes. Electrodes may be made thick and used to form mono-cell batteries which are simple to produce and yield high performance.

    Optical communication through transparent pouches of lithium ion batteries

    公开(公告)号:US11165106B2

    公开(公告)日:2021-11-02

    申请号:US16718235

    申请日:2019-12-18

    申请人: Storedot Ltd.

    摘要: Lithium ion batteries and cells, as well as operating and testing methods are provided, which utilize a transparent pouch to monitor the battery in operational condition and/or in operation. Transparent parts of the pouch may be used for direct sensing of cell elements. Removable covers may be used to protect battery components from illumination damage. Indicators in the transparent pouch may be associated with cell components such as electrodes and electrolyte to indicate their condition. External sensors may be used to derive data from the indicators, and bi-directional electromagnetic (e.g., optical) communication may be established through the transparent pouch, to enhance monitoring and spare physical electrical connections. For example, the transparent pouch may be used to monitor and enhance battery safety and/or to modify operational parameters non-destructively, during operation of the battery.

    LITHIUM ION DEVICES, OPERATED WITH SET OPERATIVE CAPACITY

    公开(公告)号:US20200335980A1

    公开(公告)日:2020-10-22

    申请号:US16389951

    申请日:2019-04-21

    申请人: StoreDot Ltd.

    摘要: Systems and methods are provided for operating lithium ion devices by setting an operative capacity below a rated capacity value of the lithium ion device, and operating the lithium ion device at the set operative capacity by decreasing a lower voltage cutoff value during discharging and/or by increasing an upper voltage cutoff level during charging—to support operation at the set operative capacity. The systems and methods may utilize residual lithium in device components such as anodes, cathodes, electrolyte etc. or combinations thereof, and/or external lithiation to increase the cycling lifetime of the lithium ion devices, to adapt to user preferences and expected use profiles, and to simplify device status indications to the user. Advantageously, relatively simple circuitry is required to implement the provided methods and systems, and achieve customizable operation of the lithium ion devices.

    Electrodes made of electrically conductive metallic porous structure with embedded active material particles

    公开(公告)号:US10586977B1

    公开(公告)日:2020-03-10

    申请号:US16254632

    申请日:2019-01-23

    申请人: StoreDot Ltd.

    摘要: Electrodes, production methods and mono-cell batteries are provided, which comprise active material particles embedded in electrically conductive metallic porous structure, dry-etched anode structures and battery structures with thick anodes and cathodes that have spatially uniform resistance. The metallic porous structure provides electric conductivity, a large volume that supports good ionic conductivity, that in turn reduces directional elongation of the particles during operation, and may enable reduction or removal of binders, conductive additives and/or current collectors to yield electrodes with higher structural stability, lower resistance, possibly higher energy density and longer cycling lifetime. Dry etching treatments may be used to reduce oxidized surfaces of the active material particles, thereby simplifying production methods and enhancing porosity and ionic conductivity of the electrodes. Electrodes may be made thick and used to form mono-cell batteries which are simple to produce and yield high performance.

    Lithium ion devices, operated with set operative capacity

    公开(公告)号:US11228195B2

    公开(公告)日:2022-01-18

    申请号:US16389951

    申请日:2019-04-21

    申请人: StoreDot Ltd.

    摘要: Systems and methods are provided for operating lithium ion devices by setting an operative capacity below a rated capacity value of the lithium ion device, and operating the lithium ion device at the set operative capacity by decreasing a lower voltage cutoff value during discharging and/or by increasing an upper voltage cutoff level during charging—to support operation at the set operative capacity. The systems and methods may utilize residual lithium in device components such as anodes, cathodes, electrolyte etc. or combinations thereof, and/or external lithiation to increase the cycling lifetime of the lithium ion devices, to adapt to user preferences and expected use profiles, and to simplify device status indications to the user. Advantageously, relatively simple circuitry is required to implement the provided methods and systems, and achieve customizable operation of the lithium ion devices.