Abstract:
An example method of performing capacitive sensing and display updating in an integrated capacitive sensing device and display device includes driving a plurality of sensor electrodes of the capacitive sensing device for input sensing during a blanking period. The method further includes driving a plurality of source lines using a plurality of source drivers during the blanking period to update a first display line of the display device. The method further includes driving the plurality of source lines using the plurality of source drivers during a display update period to update one or more additional display lines of the display device. The method further includes adjusting an operational mode of the plurality of source drivers during the blanking period to equalize display pixel settling between the blanking period and the display update period.
Abstract:
This disclosure generally provides an input device that includes a reference voltage modulator that modulates reference voltage rails when performing capacitive sensing. In one embodiment, reference voltage rails are coupled to a DC power source which provides power to operate a panel that includes a display screen integrated with a touch sensing region. Before performing capacitive sensing, the input device may isolate the DC power source from the reference voltage rails and use the reference voltage rails to modulate the rails—e.g., VDD and VGND. The input device may include a receiver that simultaneously acquires resulting signals from a plurality of display and/or sensor electrodes when modulating the reference voltage rails. The resulting signals can then be processed to determine if an input object is interacting with the input device.
Abstract:
In an example, a processing system for an integrated display device and capacitive sensing device includes driver circuitry and a driver module. The driver circuitry is configured for coupling to a plurality of source lines and a plurality of sensor electrodes, where each of the plurality of sensor electrodes comprises at least one common electrode configured for display updating and capacitive sensing. The driver module is coupled to the driver circuitry and configured to drive the plurality of sensor electrodes for capacitive sensing during a first non-display update period that occurs between first and second display line update periods of a display frame, where the non-display update period is at least as long as one of the first and second display line update periods. The driver module is further configured to operate each of the plurality of source lines to reduce display artifacts during the non-display update period.
Abstract:
Embodiments described herein include a display device having a capacitive sensing device, a processing system and a method for detecting presence of an input object using a capacitive sensing device, all of which include a grid electrode for improved absolute sensing. Other embodiments include a display device having a capacitive sensing device, a processing system and a method for detecting presence of an input object using a capacitive sensing device, wherein the capacitive sensing device includes a matrix of discrete sensor electrodes.
Abstract:
This disclosure generally provides a fingerprint sensor that derives a fingerprint by measuring capacitive sensing signals while modulating a reference voltage rail used to power the fingerprint sensor. In one embodiment, the fingerprint sensor is integrated into an electronic device which may include other components such as a display, I/O devices, speakers, and the like. To power these components, the electronic device may include a DC power supply which outputs reference voltages. When transmitting the reference voltages to the fingerprint sensor, the electronic device may modulate the voltages using a modulating signal. Because the reference voltages are used to power the components in the fingerprint sensor, modulating the rail voltages also causes the components coupled to the reference voltages to also modulate. While this modulation occurs, the fingerprint sensor measures resulting signals using a plurality of sensor electrodes which are then processed to derive a fingerprint.
Abstract:
This disclosure generally provides an input device that includes a reference voltage modulator that modulates reference voltage rails when performing capacitive sensing. In one embodiment, reference voltage rails are coupled to a DC power source which provides power to operate a panel that includes a display screen integrated with a touch sensing region. Before performing capacitive sensing, the input device may isolate the DC power source from the reference voltage rails and use the reference voltage rails to modulate the rails—e.g., VDD and VGND. The input device may include a receiver that simultaneously acquires resulting signals from a plurality of display and/or sensor electrodes when modulating the reference voltage rails. The resulting signals can then be processed to determine if an input object is interacting with the input device.
Abstract:
Embodiments of the invention generally provide a display panel that uses predefined criteria to determine when to send a request for a display frame to a display source. The predefined criteria may be, for example, when the display panel needs to refresh the display faster than the display source transmits display frames, when the display source fails to send a new display frame within a specified time period, when a maximum refresh time is exceeded and the displayed image begins to decay or leak, and the like. Furthermore, the display panel may include a frame buffer for storing the display frames received from the display source. Additional predefined criteria may be when the display frame stored in the frame buffer becomes corrupted or when the frame buffer lacks enough available memory to store the frame. In response, the display panel may request the display source retransmit the previous display frame.
Abstract:
Display devices with improved routing between connectors and source drivers disposed on a substrate such as glass. Various features improve different characteristics of the routings between the connectors and source drivers. For example, a t-shaped connector is provided to ensure voltage provided to the source drivers is approximately equal. Routings may be tapered (i.e., altered in width) to reduce the amount of area consumption in locations where doing so is desirable but to decrease resistance in areas having more space. Routings may also include stacked power supply and ground traces to provide benefits such as improved decoupling capacitance. Other features are provided.
Abstract:
Various embodiments enable driving one or more sub-pixels with a source voltage while concurrently modulating the voltage of one or more common electrodes coupled to the sub-pixels to perform input sensing with the common electrodes. The voltage driven onto the sub-pixel may be shifted while the common electrode is modulated by a value about equal to about the amplitude of the modulation applied to the common electrode. Thus, the potential difference between the source line and common electrode remains substantially unchanged so that display asperities are not introduced while input sensing while concurrently updating a sub-pixel with display information. Thus, the common electrode(s) may be modulated for input sensing without interfering with display updating of the one or more sub-pixels, greatly increasing the amount of time available for performing input sensing and/or display updating.
Abstract:
Embodiments of the present invention generally provide an input device including a display device having an integrated capacitive sensing device. The input device includes a plurality of select line blocks, a plurality of gate low voltage lines, a gate high voltage line coupled to at least one select line included in at least one of the select line blocks, a plurality of transmitter electrodes, and a processing system coupled to the plurality gate low voltage lines and the plurality of transmitter electrodes. Each select line block includes a plurality of select lines. Each gate low voltage line is coupled to a different select line block. The processing system is configured to drive the plurality of transmitter electrodes for capacitive sensing, receive resulting signals from the plurality of gate low voltage lines, and determine positional information based on the resulting signals.