摘要:
A process for obtaining high concentration argon from air by means of pressure-swing-adsorption, characterized by passing air through a zeolite molecular sieve-packed adsorption apparatus and a carbon molecular sieve-packed adsorption apparatus in this order, subjecting the air to pressure-swing-adsorption operation independently in the above pieces of adsorption apparatus, thereby obtaining concentrated argon and high purity oxygen simultaneously.
摘要:
In production of high concentration oxygen by a pressure-swing-adsorption method using air as a raw material, air is introduced into a first step adsorption apparatus packed with a zeolite molecular sieve and is subjected to a pressure-swing-adsorption operation to obtain a non-adsorbed gas comprising oxygen as the major component, argon and nitrogen; the non-adsorbed gas is introduced into a second step adsorption apparatus packed with a carbon molecular sieve and is subjected to a pressure-swing-adsorption operation to separate argon and nitrogen from oxygen as a non-adsorbed gas; and the desorbed oxygen is obtained as high concentration oxygen.
摘要:
A process for recovering an oxygen enriched gas from a mixed gas mainly composed of nitrogen gas and oxygen gas by means of PSA comprising:providing two adsorbers A and B packed with zeolite molecular sieve as the adsorbent and a gas reservoir for accumulating the recovered oxygen enriched gas which is connected to the outlet side of each adsorber and used in common to both adsorbers, introducing the mixed gas into adsorber A to adsorb nitrogen gas, and desorbing nitrogen has previously adsorbed in adsorber B therefrom under reduced pressure.Introduction, adsorption and desorption are carried out according to adsorption, desorption, rinsing, recovering, pressure accumulation and pressurization steps in turn with alternation of adsorbers A and B.
摘要:
An oxygen-enriched gas having an oxygen concentration of, for example, 93% by volume, is produced at a high oxygen recovery rate from a gas mixture containing oxygen and nitrogen as main gas components by pressure swing adsorption, using a set of three adsorption columns, each packed with a zeolite molecular sieve as an adsorbent through a cyclic operation of adsorption under a pressure of from atmospheric pressure to 5,000 mm H.sub.2 O and desorption under vacuum pressure down to the final pressure of 150 mm Hg abs.
摘要:
An adsorption apparatus with a good heat recovery and a good noise abatement for separating a gas mixture into its components by pressure swing adsorption comprises a closed vessel having an inlet nozzle for a gas mixture at one end, an adsorbent packed as a bed in the closed vessel and a passage for an unadsorbed gas being vertically provided in the vessel through the adsorbent bed, whose one end is open above the top of the adsorbent bed and whose another end passes through the closed vessel at the inlet nozzle side to the outside.
摘要:
A double vacuum pump apparatus (Y2) includes positive displacement vacuum pumps (40A, 40B) and lines (52, 60). Each of the vacuum pumps includes a suction port (41) and a discharge port (42), and a pressure detector (80) is provided in the vicinity of the suction port (41) of the double vacuum pump apparatus (Y2). The line (52) connects the discharge port (42) of the vacuum pump (40A) to the suction port (41) of the vacuum pump (40B). The line (60) has an end (E6) and an end (E5) that are connected to the connection line (52), and includes a buffer tube (Z1) and an on-off valve (61) located between the tube (Z1) and the end (E5). A pressure detection signal from the pressure detector (80) is used as an on/off signal for the on-off valve (61).
摘要:
A double vacuum pump apparatus (Y2) includes positive displacement vacuum pumps (40A, 40B) and lines (52, 60). Each of the vacuum pumps includes a suction port (41) and a discharge port (42), and a pressure detector (80) is provided in the vicinity of the suction port (41) of the double vacuum pump apparatus (Y2). The line (52) connects the discharge port (42) of the vacuum pump (40A) to the suction port (41) of the vacuum pump (40B). The line (60) has an end (E6) and an end (E5) that are connected to the connection line (52), and includes a buffer tube (Z1) and an on-off valve (61) located between the tube (Z1) and the end (E5). A pressure detection signal from the pressure detector (80) is used as an on/off signal for the on-off valve (61).
摘要:
In a process of recovering oxygen-enriched gas by pressure swing adsorption with use of adsorbers (A, B) each packed with an adsorbent which selectively adsorbs nitrogen from a gas mixture mainly containing nitrogen and oxygen, recovery of remaining oxygen-enrich gas is fully carried out by pressure equalization between both adsorbers (A, B), and a vacuum pump (8) is always connected to either adsorber (A or B) for continuous evacuation of nitrogen. For this purpose, the pressure equalization between both adsorbers (A, B) is conducted at least in two steps wherein one adsorber (A or B) is pressurized, whereas the other adsorber (B or A) is pressurized, so that recovery of oxygen-enriched gas is possible until there is substantially no pressure difference between both adsorbers (A, B).
摘要:
A process for separating a specific component from air which comprises alternately and repeatedly carrying out a step of feeding air under pressure to a non-porous gas separation membrane and suctioning of a permeating gas under vacuum after feeding of air is stopped.
摘要:
A hydrogen gas separation method utilizing PSA process employs a plurality of adsorption towers A, B, C loaded with an adsorbent for separating the hydrogen gas from a hydrogen-containing gas mixture, and a cycle including introducing the gas mixture into the adsorption tower, adsorbing unnecessary gas in the gas mixture by the adsorbent, leading out product gas having high hydrogen concentration from the adsorption tower, desorbing the unnecessary gas from the adsorbent, and leading out desorbed gas containing the unnecessary gas and residual gas in the adsorption tower from the adsorption tower, is repeated. The adsorbent includes an activated carbon-based first adsorbent D located on the upstream side of the flow direction of the gas mixture in the adsorption tower with an filling ratio of 60 to 80%, and a zeolite-based second adsorbent E located on the downstream side of the flow direction with filling ratio of 40 to 20%.