摘要:
A method and apparatus to select the best channel of a wireless network for data communication at any given time, during normal operation of the network, is described. The network may be an IEEE standard 802.11 compliant network. Channel scanning may be performed in any station on the wireless network, such as an access point (AP) or a mobile station, or both. Channel scanning may be performed during data communication idle time, or simultaneously with data communication on the network. The technique can be implemented in a multiple-input multiple-output (MIMO) communication system, where the antenna or antennas used for channel scanning can be selected dynamically during operation, to optimize one or more performance characteristics.
摘要:
A method and apparatus to select the best channel of a wireless network for data communication at any given time, during normal operation of the network, is described. The network may be an IEEE standard 802.11 compliant network. Channel scanning may be performed in any station on the wireless network, such as an access point (AP) or a mobile station, or both. Channel scanning may be performed during data communication idle time, or simultaneously with data communication on the network. The technique can be implemented in a multiple-input multiple-output (MIMO) communication system, where the antenna or antennas used for channel scanning can be selected dynamically during operation, to optimize one or more performance characteristics.
摘要:
A low complexity primary user detection system is disclosed. Signals are filtered to reduce the number of signals that must be processed. Width and PRI of the signals are used to match a constellation associated with a primary user. If the constellation is matched, communication parameters are adjusted to make way for the primary user.
摘要:
Disclosed are methods and apparatuses related to the routing of communications in a wireless mesh network so as to provide improved range, reliability and/or throughput. At least some aspects of the techniques and apparatuses can be implemented in an intermediary node (relay node) on a wireless mesh network. The relay node and other devices on the wireless network may implement a form of multiple-input multiple-output (MIMO) communication, such as multi-user MIMO (MU-MIMO). The devices on the network can communicate in accordance with IEEE standard 802.11.
摘要:
Disclosed are methods and apparatuses related to the routing of communications in a wireless mesh network so as to provide improved range, reliability and/or throughput. At least some aspects of the techniques and apparatuses can be implemented in an intermediary node (relay node) on a wireless mesh network. The relay node and other devices on the wireless network may implement a form of multiple-input multiple-output (MIMO) communication, such as multi-user MIMO (MU-MIMO). The devices on the network can communicate in accordance with IEEE standard 802.11.
摘要:
A low complexity primary user detection system is disclosed. Signals are filtered to reduce the number of signals that must be processed. Width and PRI of the signals are used to match a constellation associated with a primary user. If the constellation is matched, communication parameters are adjusted to make way for the primary user.
摘要:
A method and system for determining blood pressure are disclosed. The method comprises determining a plurality of heart sounds using a microphone of a handheld device and determining a pulse wave using a camera of the handheld device, wherein the plurality of heart sounds and the pulse wave are utilized to determine the blood pressure. The system includes a processor, a memory device coupled to the processor, and an application coupled to the memory device. The system further comprises a microphone coupled to the processor, wherein the microphone is utilized to determine a plurality of heart sounds and a camera coupled to the processor, wherein the camera is utilized to determine a pulse wave, further wherein the application, when executed by the processor, causes the processor to determine the blood pressure using the plurality of heart sounds and the pulse wave.
摘要:
A method is provided for Single Carrier-Frequency-Division Multiple Access (SC-FDMA) Physical Uplink Control Channel (PUCCH) format 1/1a/1b detection in a wireless communications receiver. The receiver accepts a plurality of multicarrier signals transmitted simultaneously from a plurality of transmitters, with overlapping carrier frequencies. For each multicarrier signal, a single tap measurement of time delay is performed using a Direction of Arrival (DoA) technique. In response to the single tap measurements, PUCCH 1/1a/1b format signals are detected. Prior to performing the single tap measurements, the multicarrier signals are decorrelated in the time domain, using corresponding orthogonal code covers. Subsequent to the single tap measurements, each multicarrier signal is decorrelated in the frequency domain, using a corresponding cyclic shift. Subsequent to decorrelating the multicarrier signals in the frequency domain, a Generalized Likelihood Ratio Test (GLRT) is performed for each decorrelated multicarrier signal.
摘要:
A physical layer (PHY) packet aggregation technique may be used to reduce the percentage of PHY overhead in data transmission in order to achieve better PHY efficiency and higher throughput. Higher layer packets in an upper layer data queue may be fragmented into appropriate small-size sub-packets, which include a body encapsulated by a MAC header and an FCS field. The sub-packets are then concatenated to form the data field of an aggregated PHY packet. Since each of the sub-packets contains its own MAC (Media Access Control) header and FCS (Frame Check Sequence) field, the receiver can identify and flag erroneous sub-packets on an individual basis. The receiver may transmit a block ACK, which includes the acknowledgement status for each of the sub-packets in the aggregated PHY packet, to the transmitter. The transmitter may resend only the erroneous sub-packet(s).
摘要:
A signal processor includes an in-phase and quadrature (I/Q) detection module that generates I/Q components based on baseband signals. An analog to digital converter converts the I/Q components to digital I/Q components. An I/Q imbalance compensation module generates compensated I/Q components based on the digital I/Q components and maximum likelihood estimates of gain imbalance and phase imbalance. A frequency converting module converts the compensated I/Q components to first subcarrier signals. A channel estimating module generates initial channel estimates based on second subcarrier signals. The second subcarrier signals are based on the first subcarrier signals. A phase error and I/Q imbalance module generates the maximum likelihood estimates of the gain imbalance and the phase imbalance based on the initial channel estimates and the second subcarrier signals.