Abstract:
A display apparatus includes: a pixel part including a plurality of pixels arranged substantially in a matrix form, where the matrix form includes a unit matrix having X columns in a horizontal direction and Y rows in a vertical direction, where X and Y are natural numbers; and a plurality of light controlling parts inclined with respect to the vertical direction of the pixels on the pixel part at an inclined angle of θ, where the inclined angle of θ satisfies the following equation: θ=tan−1(M×X/N×Y), where M and N are different natural numbers.
Abstract:
A new 2D/3D switchable display apparatus matches a polarization direction of light output from a 2D image display panel with a rubbing direction of a lower alignment layer of a liquid crystal lens, and tilts a rubbing direction of an upper alignment layer of the liquid crystal lens and a direction of a polarization axis of a polarizer at a predetermined angle, thereby reducing a loss of light passing through the liquid crystal lens, making it possible to improve luminance of images, improve the quality of 3D images in the horizontal direction, prevent or reduce color separation and moire phenomena, and reduce the manufacturing cost.
Abstract:
A display device includes; a display panel, a lens substrate facing the display panel, an air layer disposed between the display panel and the lens substrate, and a light refraction portion disposed on a surface of the lens substrate facing the display panel, wherein an average refractive index of the light refraction portion taken along a plane substantially parallel to the display panel increases in a direction substantially parallel to a path of light from the display panel to the lens substrate.
Abstract:
A display device includes a first substrate including a protrusion electrode pattern, a second substrate disposed opposite to the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate. The protrusion electrode pattern is made of a conductive polymer material, and a state of the liquid crystal layer changes from an isotropic state to an anisotropic state when an electric field is applied.
Abstract:
A display device includes; a display panel, a lens substrate facing the display panel, an air layer disposed between the display panel and the lens substrate, and a light refraction portion disposed on a surface of the lens substrate facing the display panel, wherein an average refractive index of the light refraction portion taken along a plane substantially parallel to the display panel increases in a direction substantially parallel to a path of light from the display panel to the lens substrate.
Abstract:
A new 2D/3D switchable display apparatus matches a polarization direction of light output from a 2D image display panel with a rubbing direction of a lower alignment layer of a liquid crystal lens, and tilts a rubbing direction of an upper alignment layer of the liquid crystal lens and a direction of a polarization axis of a polarizer at a predetermined angle, thereby reducing a loss of light passing through the liquid crystal lens, making it possible to improve luminance of images, improve the quality of 3D images in the horizontal direction, prevent or reduce color separation and moire phenomena, and reduce the manufacturing cost.
Abstract:
The present invention relates to an image display device using a diffractive lens. An image display device according to an exemplary embodiment of the present invention includes a display panel displaying an image, and a diffractive lens for the image of the display panel to be recognized as a two-dimensional (2D) image or a three-dimensional (3D) image, wherein the diffractive lens modifies a path of light by using an optical principle of a Fresnel zone plate.
Abstract:
A three-dimensional display device comprises a flat display panel and an image-converting sheet disposed on or above the display panel. The display panel comprises a matrix of unit display cells arranged as rows and columns and where the cells are spaced apart to have respective row and column direction pitches. The image-converting sheet comprises a plurality of inclined lenticular lenses where the inclination is set according to the row and column direction pitches so as to reduce perception of Moiré patterns when stereo-scopic images are projected through the image-converting sheet to an observer viewing the display panel as an upright panel having respectively different left and right stereo-scopic image projections.
Abstract:
In a stereoscopic image conversion panel and a stereoscopic image display apparatus, the stereoscopic display panel includes a first lens substrate, a second lens substrate, a stereoscopic image lens part and a lens liquid crystal layer. The stereoscopic image lens part is disposed between the first and second substrates, and includes a main lens and sub-lenses with a concave shape. At least one sub-lens is disposed at opposite edge portions of the main lens. The lens liquid crystal layer is received by the main lens and the sub-lenses, is disposed between the first and second lens substrates, and includes liquid crystal molecules having an anisotropic refractive index. The lens liquid crystal layer refracts a polarized light at an interface between the lens liquid crystal layer and the stereoscopic lens part, to convert a flat image into a stereoscopic image. Therefore, the thickness of the stereoscopic image panel can be reduced.
Abstract:
An image display device includes a display panel displaying an image, and a diffractive element formed to operate in a 2D mode or a 3D mode so that the image of the display panel is perceived as a 2D image or a 3D image after passing through the diffractive element. In the image display device, the diffractive element includes a first substrate and a second substrate facing each other, a first electrode layer formed on the first substrate that includes a plurality of zones, a second electrode layer formed on the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate. Further, when the diffractive element operates in the 3D mode, a common voltage is applied to the second electrode layer, and polarity of voltages applied to the first electrode layer with respect to the common voltage is inverted every zone.