Abstract:
A liquid crystal display system including a signal processing device uses interpolation to generate an intermediate image frame using previous image frame data and present image frame data. The system converts data of the intermediate image frame into transposed image data that is to be used to drive a liquid crystal display panel and display a corresponding image. The transposed image data and the present image data are subjected to a prespecified DCC process (dynamic capacitance compensation process) to thereby generate respective first and second compensation image data. Since the first compensation image data is generated based on the transposed image data and the transposition is configured to prevent over-compensation by the DCC process, over-compensation by the dynamic capacitance compensation process can be reduced or prevented.
Abstract:
An display device includes a display panel including a plurality of pixels; a scan driver configured to provide scan signals to the pixels; a data driver configured to provide data signals to the pixels; a look-up table (LUT), wherein an efficiency curve indicating a relationship between an accumulated driving time and an efficiency value is stored in the LUT; a lifespan register, wherein an efficiency changing region for deriving the efficiency value of each of the pixels from the LUT is stored in the lifespan register and the lifespan register is configured to accumulatively store deterioration data of the pixels; and a controller configured to derive the accumulated driving time from the lifespan register, to update the efficiency changing region and the LUT based on the accumulated driving time, and to convert input image data into output image data using the efficiency changing region and the LUT.
Abstract:
A display device includes a source device to output image data in a normal mode and in a re-synchronization mode, and refrain from outputting the image data in a panel self-refresh mode, and a sink device to perform a displaying operation based on the image data in the normal mode, store the image data at a time when an operating mode is changed from the normal mode to the PSR mode, perform the displaying operation based on the still image data in the PSR mode, and perform a frame-timing synchronization operation in the re-synchronization mode in response to a PSR-exiting command, wherein the frame-timing synchronization operation includes a first period in which a length-change of a vertical blank period is measured, a second period in which a temporary panel on-off clock is determined, and a third period in which the temporary panel on-off clock is applied to the adjustment-target frame.
Abstract:
Provided are an image signal compensation apparatus and a liquid crystal display (LCD) including the same. The image signal compensation apparatus includes a lookup table (LUT) and an image signal compensation unit. The LUT includes reference data that corresponds to each combination of first and second reference gray levels and is arranged in a matrix. The image signal compensation unit receives first and second image signals, receives reference data corresponding to the first and second image signals from the LUT, and compensates the second image signal using the reference data. The reference data includes diagonal reference data located on a diagonal line in the matrix, and at least one diagonal reference data from among the diagonal reference data has a different value from a corresponding combination of the first and second reference gray levels.
Abstract:
Provided are an image signal compensation apparatus and a liquid crystal display (LCD) including the same. The image signal compensation apparatus includes a lookup table (LUT) and an image signal compensation unit. The LUT includes reference data that corresponds to each combination of first and second reference gray levels and is arranged in a matrix. The image signal compensation unit receives first and second image signals, receives reference data corresponding to the first and second image signals from the LUT, and compensates the second image signal using the reference data. The reference data includes diagonal reference data located on a diagonal line in the matrix, and at least one diagonal reference data from among the diagonal reference data has a different value from a corresponding combination of the first and second reference gray levels.
Abstract:
An display device includes a display panel including a plurality of pixels; a scan driver configured to provide scan signals to the pixels; a data driver configured to provide data signals to the pixels; a look-up table (LUT), wherein an efficiency curve indicating a relationship between an accumulated driving time and an efficiency value is stored in the LUT; a lifespan register, wherein an efficiency changing region for deriving the efficiency value of each of the pixels from the LUT is stored in the lifespan register and the lifespan register is configured to accumulatively store deterioration data of the pixels; and a controller configured to derive the accumulated driving time from the lifespan register, to update the efficiency changing region and the LUT based on the accumulated driving time, and to convert input image data into output image data using the efficiency changing region and the LUT.
Abstract:
A display unit including pixels which display an image according to an image data signal transferred corresponding to each of the pixels, and a controller to receive and convert an external input video signal to transfer a luminance conversion data signal corresponding to the respective pixels. The controller includes: an input image data to receive the external input video signal; a scale factor calculation unit to determine at least one control factor for luminance conversion with respect to an input video signal corresponding to the pixels received from the input image data receiving unit; and a luminance data conversion unit to convert luminance data with respect to the respective pixels using the at least one determined control factor and to output the luminance conversion data signal.
Abstract:
A liquid crystal display includes a timing controller and a liquid crystal panel. The timing controller sequentially receives first through third primitive image signals and sequentially outputs first through third corrected image signals. The liquid crystal panel displays an image based on the first through third corrected image signals. The timing controller generates a first converted image signal having a first gray level based on the first primitive image signal and stores the first converted image signal. The second primitive image signal has a second gray level and the timing controller generates a second converted image signal having a third gray level higher than the second gray level when the second gray level is lower than the first gray level. The timing controller generates the third corrected image signal using the second converted image signal and the third primitive image signal.