Abstract:
A display panel includes a plurality of pixels including at least four even-numbered subpixels. The at least four even-numbered subpixels includes: a first red subpixel including a pixel electrode electrically connected to a switching element which is connected to a first data line and a first gate line; a first green subpixel including a pixel electrode electrically connected to a switching element which is connected to a second data line and a second gate line, where the second data line is disposed adjacent to the first data line; a first blue subpixel including a pixel electrode electrically connected to a switching element which is connected to the first data line and the second gate line; and a first multi-primary subpixel including a pixel electrode electrically connected to a switching element which is connected to the second data line and the first gate line.
Abstract:
In one aspect, a transparent laminate, including a transparent material layer, a transparent high-elasticity layer laminated on both sides of the transparent material layer and having Young's modulus of less than or equal to about 10 MPa, and a transparent high-hardness layer sequentially laminated on the transparent high-elasticity layer that is laminated on both sides of the transparent material layer and having a surface hardness of greater than or equal to a pencil hardness of about 6H is provided.
Abstract:
A flat panel display apparatus is disclosed. In one embodiment, the apparatus includes a panel configured to display an image and an electrode pattern for touch manipulation disposed over the panel. The apparatus also includes a polarizing film disposed over the electrode pattern; and a window disposed on the polarizing film.
Abstract:
A device for making a window includes a main body defining a first space and a second space, a first shaft provided in the first space and connected to the main body, a first die provided in the first space and connected to the first shaft, a second shaft connected to the main body, movable relative to the first shaft and extending to the first space from the second space, and a second die provided in the first space and connected to the second shaft.. The device further includes an air-tight chamber surrounding the first and second dies, a gas supply conduit and a gas discharge conduit connected to the chamber, and an actuator connected to the second shaft and configured to move the second shaft relative to the first shaft. At least one of the first and second dies has a flat area and a curved area.
Abstract:
A flat panel display apparatus is disclosed. In one embodiment, the apparatus includes a panel configured to display an image; a glass window covering the panel; and a polarizing film attached on a surface of the glass window, wherein the polarizing film is configured to prevent the scatter of broken pieces when the glass window breaks and also prevent reflection of an external light.
Abstract:
LCD device includes two substrates, a first and second color filters, two liquid crystal layers. The first color filters are formed on portions of the second substrate corresponding to border area The second color filters are formed on portions of the second substrate corresponding to the display area except the border area. A first liquid crystal layer between the first and the second substrate is comprised in border area, and a zero electric field is formed on the first liquid crystal layer so as to completely transmit light incident into the first liquid crystal layer therethrough. A borderline having various colors can be displayed by forming various patterns of color filters having various colors on portions of the second substrate corresponding to the border area under normally white mode, thereby producing picture frame effect while images are displayed on the screen.
Abstract:
A liquid crystal display (“LCD”) device provides enhanced display quality. An insulating layer is formed on a first substrate. The insulating layer covers the contact portion of a switching device in which the switching device is electrically connected to a transparent electrode and has an opening for exposing a portion of the transparent electrode. A reflection electrode is electrically connected to the transparent electrode through the opening. The insulation layer covers a first portion of a driving circuit formed on the first substrate. A sealant is interposed between the first and second substrate to engage the first and second substrate and to cover a second portion of the driving circuit. Therefore, the driver circuit may operate normally, and the distortion of the signal outputted from the driver circuit may be prevented.
Abstract:
An LCD device provides enhanced display quality. An insulating layer is formed on a first substrate. The insulating layer covers the contact portion of a switching device in which the switching device is electrically connected to a transparent electrode and has an opening for exposing a portion of the transparent electrode. A reflection electrode is electrically connected to the transparent electrode through the opening. The insulation layer covers a first portion of a driving circuit formed on the first substrate. A sealant is interposed between the first and second substrate to engage the first and second substrate and to cover a second portion of the driving circuit. Therefore, the driver circuit may operate normally, and the distortion of the signal outputted from the driver circuit may be prevented.
Abstract:
An LCD device provides enhanced display quality. An insulating layer is formed on a first substrate. The insulating layer covers the contact portion of a switching device in which the switching device is electrically connected to a transparent electrode and has an opening for exposing a portion of the transparent electrode. A reflection electrode is electrically connected to the transparent electrode through the opening. The insulation layer covers a first portion of a driving circuit formed on the first substrate. A sealant is interposed between the first and second substrate to engage the first and second substrate and to cover a second portion of the driving circuit. Therefore, the driver circuit may operate normally, and the distortion of the signal outputted from the driver circuit may be prevented.
Abstract:
LCD device includes two substrates, a first and second color filters, two liquid crystal layers. The first color filters are formed on portions of the second substrate corresponding to border area The second color filters are formed on portions of the second substrate corresponding to the display area except the border area. A first liquid crystal layer between the first and the second substrate is comprised in border area, and a zero electric field is formed on the first liquid crystal layer so as to completely transmit light incident into the first liquid crystal layer therethrough. A borderline having various colors can be displayed by forming various patterns of color filters having various colors on portions of the second substrate corresponding to the border area under normally white mode, thereby producing picture frame effect while images are displayed on the screen.