Abstract:
A display apparatus includes a display panel, a polarizing plate, and a patterned retarder. The display panel includes a first substrate including a signal line and a pixel. A second substrate faces the first substrate. An image display device is disposed between the first and second substrates. The first substrate is disposed in a position to which external light is incident. The polarizing plate is disposed above the first substrate of the display panel. The patterned retarder is disposed between the polarizing plate and the signal line. The patterned retarder retards the external light such that the external light reflected by the signal line does not pass through the polarizing plate.
Abstract:
A liquid crystal lens panel includes a first substrate including a lens area, a non-lens area disposed adjacent to the lens area, and a cutting area disposed adjacent to the non-lens area and including a liquid crystal driving part, a second substrate disposed opposite to the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate, where the liquid crystal driving part applies a liquid crystal driving voltage to the liquid crystal layer through the non-lens area, and liquid crystal molecules of the liquid crystal layer are driven substantially in a vertical direction by the liquid crystal driving voltage.
Abstract:
A liquid crystal display device includes a first substrate, a first alignment layer on the first substrate, a second substrate facing the first substrate, a second alignment layer on the second substrate, and a liquid crystal layer between the first substrate and the second substrate and including liquid crystal molecules. The first alignment layer and the second alignment layer include a polymer including at least of polyamic acid, polyimide, and a combination including at least one of the foregoing polymers, and a compound including an epoxy cross-linker represented by Chemical Formula 1.
Abstract:
An inspection apparatus for a display substrate includes a reflection plate, a liquid crystal layer, an electrode layer, a ¼ wavelength retardation plate and a polarization plate. The liquid crystal layer is disposed on the reflection plate and includes liquid crystal molecules which have a retardation value of about 140 nanometers to about 200 nanometers and are operated in a twisted nematic mode. The electrode layer is disposed on the liquid crystal layer and generates an electric field in cooperation with an electrode of the display substrate. The ¼ wavelength retardation plate is disposed on the electrode layer and the polarization plate is disposed on the ¼ wavelength retardation plate.
Abstract:
A liquid crystal lens panel includes a first substrate including a lens area, a non-lens area disposed adjacent to the lens area, and a cutting area disposed adjacent to the non-lens area and including a liquid crystal driving part, a second substrate disposed opposite to the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate, where the liquid crystal driving part applies a liquid crystal driving voltage to the liquid crystal layer through the non-lens area, and liquid crystal molecules of the liquid crystal layer are driven substantially in a vertical direction by the liquid crystal driving voltage.