Abstract:
A flexible display device includes a flexible display panel, an outer member disposed on a surface of the flexible display panel and including an electrode layer, and a stress control member disposed between the flexible display panel and the outer member, where the stress control member allows neutral planes to be defined in the flexible display panel and the outer member, respectively, when the flexible display device is bent, the outer member includes a touch panel including the electrode layer, a flexible member disposed on the touch panel, and an adhesive layer disposed between the touch panel and the flexible member and which couples the touch panel to the flexible member, and a neutral plane of the outer member is defined in the touch panel.
Abstract:
A display device includes a light emitting diode disposed on a substrate, a thin film encapsulation layer covering the light emitting diode, a polarization layer disposed on the thin film encapsulation layer. The thin film encapsulation layer includes a plurality of phase retardation layers.
Abstract:
A polarization unit includes a plurality of retardation layers that each have a different retardation value, a polarization layer positioned above the plurality of retardation layers, a first compensation layer positioned between the polarization layer and the plurality of retardation layers, and a second compensation layer positioned below the plurality of retardation layers.
Abstract:
A substrate inspection apparatus includes a liquid crystal modulator configured to be provided on a substrate, a light source unit provided to be spaced apart from the liquid crystal modulator, a beam splitter provided between the liquid crystal modulator and the light source unit configured to reflect a beam of light from the light source to the liquid crystal modulator, and a measurement unit configured to sense the beam of light reflected by the substrate.
Abstract:
A liquid crystal lens panel includes a first substrate including a lens area, a non-lens area disposed adjacent to the lens area, and a cutting area disposed adjacent to the non-lens area and including a liquid crystal driving part, a second substrate disposed opposite to the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate, where the liquid crystal driving part applies a liquid crystal driving voltage to the liquid crystal layer through the non-lens area, and liquid crystal molecules of the liquid crystal layer are driven substantially in a vertical direction by the liquid crystal driving voltage.
Abstract:
A display device may include a display panel that includes a plurality of display elements. The display device may further include a protective member overlapping the display panel. The display device may further include an optical member disposed between the display panel and the protective member and configured to prevent light reflected by the display panel from reaching the protective member. The optical member may include a plurality of directional members. The plurality of directional members may have an optic axis.
Abstract:
An inspection apparatus for a display substrate includes a reflection plate, a liquid crystal layer, an electrode layer, a ¼ wavelength retardation plate and a polarization plate. The liquid crystal layer is disposed on the reflection plate and includes liquid crystal molecules which have a retardation value of about 140 nanometers to about 200 nanometers and are operated in a twisted nematic mode. The electrode layer is disposed on the liquid crystal layer and generates an electric field in cooperation with an electrode of the display substrate. The ¼ wavelength retardation plate is disposed on the electrode layer and the polarization plate is disposed on the ¼ wavelength retardation plate.
Abstract:
A liquid crystal lens panel includes a first substrate including a lens area, a non-lens area disposed adjacent to the lens area, and a cutting area disposed adjacent to the non-lens area and including a liquid crystal driving part, a second substrate disposed opposite to the first substrate, and a liquid crystal layer interposed between the first substrate and the second substrate, where the liquid crystal driving part applies a liquid crystal driving voltage to the liquid crystal layer through the non-lens area, and liquid crystal molecules of the liquid crystal layer are driven substantially in a vertical direction by the liquid crystal driving voltage.