Abstract:
A display device comprises a display panel comprising an image display area and a non-display area, display pixels comprising light-emitting elements in the image display area and pixel driving units connected to the light-emitting elements, light-sensing pixels comprising photo-detecting units in a fingerprint sensing area in the image display area, and sense driving units connected to the photo-detecting units, a light-sensing reset driver configured to supply reset signals to the sense driving units of the light-sensing pixels for at least each horizontal line among the light-sensing pixels in response to a line select signal from a display driving circuit; and a fingerprint scan driver configured to sequentially supply a fingerprint scan signal to the sense driving units of the light-sensing pixels in response to a fingerprint scan control signal from the display driving circuit.
Abstract:
A display device includes a display panel including a plurality of pixels configured to display an image, a photo sensor on one surface of the display panel to sense light, and a fingerprint detector configured to control a fake determination image pattern of a fingerprint sensing area of the display panel configured to sense a fingerprint, and to perform fingerprint authentication and fake fingerprint determination, based on a sensing signal supplied from the photo sensor.
Abstract:
In a method of generating compensation data for a display device, first color, second color, and third color compensation value sets may be obtained by capturing first color, second color, and third color images displayed by the display device, respectively, white, first color, second color, and third color loading luminances may be obtained by capturing white, first color, second color, and third color loading patterns displayed by the display device, respectively, first color, second color, and third color scale factors may be calculated by dividing a luminance decrease ratio of the white loading luminance by luminance decrease ratios of the first color, second color, and third color loading luminances, respectively, and the first color, second color, and third color compensation value sets and the first color, second color, and third color scale factors may be stored in the display device.
Abstract:
A display device including: scan lines including first and second scan lines; pixels connected to the scan lines; photo sensors connected to some of the scan lines, the photo sensors including a first photo sensor connected to the first scan line and a readout line, and a second photo sensor connected to the second scan line and the readout line; a scan driver to provide scan signals to the scan lines; and a readout circuit to receive, through the readout line, detection signals which are outputted from the photo sensors in response to the scan signals, wherein, while the scan signals are provided to the first and second scan lines, the readout circuit samples a detection signal of one of the first photo sensor and the second photo sensor without sampling a detection signal of the other one of the first photo sensor and the second photo sensor.
Abstract:
A method for detecting noise includes determining whether a data value of a candidate pixel in a predetermined region of an image matches a first dynamic false contour (DFC) candidate value, determining whether a data value of at least one pixel adjacent to the candidate pixel matches a second DFC candidate value, and changing the data value of the candidate pixel the prior two determinations. The data value of the candidate pixel may be changed to a value in a lookup table. The first and second DFC candidate values may also be stored in one or more lookup tables.
Abstract:
A display device includes: a display panel; an emission driver; a scan driver; and a timing controller. The display panel includes light emitting pixels and photosensitive pixels, where the photosensitive pixels are operated in an initialization period, a light exposure period and a sensing period. The emission driver supplies emission control signals to emission control lines connected to the light emitting pixels, based on an emission start signal. The scan driver supplies scan signals to scan lines connected to the light emitting pixels and the photosensitive pixels, based on a scan start signal. The timing controller generates the emission start signal having a single pulse of a gate-off level and the scan start signal having a single pulse of a gate-on level in a last frame period among frame periods corresponding to the light exposure period and in each of frame periods corresponding to the sensing period.
Abstract:
A display device includes: a display panel; a scan driver to provide scan signals to scan lines; an emission driver to provide emission control signals to emission control lines; and a readout circuit to receive a sensing signal from a readout line. The display panel includes: a first pixel in a first row, and connected to a first sub-scan line from among the scan lines, and a first emission control line; a first photo sensor in the first row, and connected to the first sub-scan line, a reset control line, and the readout line; a second pixel in a second row, and connected to a second sub-scan line from among the scan lines, and a second emission control line; and a second photo sensor in the second row, and connected to the second sub-scan line, a third emission control line, and the readout line.
Abstract:
A display device including a fingerprint sensor including a first layer having at least one photo sensor to generate a fingerprint image corresponding to reflected light from a fingerprint contact surface, light emitting elements to transmit light reflected by the fingerprint, and a second layer including pin holes to allow reflected light to be incident upon the at least one photo sensor; and a fingerprint detector to receive the fingerprint image from the fingerprint sensor, to extract a first image corresponding to a first region of the fingerprint and a second image corresponding to a second region of the fingerprint, to compare the first and second images to determine similarity, and to perform fingerprint authentication, based on similarity determination, where the fingerprint first region is in contact with the fingerprint contact surface and the fingerprint second region is not in contact with the fingerprint contact surface.
Abstract:
A fingerprint sensor includes a substrate, a light blocking layer that is on a first surface of the substrate and includes openings in a light blocking mask, and a sensor layer that is on a second surface of the substrate and includes photo sensors. A fingerprint sensing method of the fingerprint sensor includes: storing a calibration image; generating an original image, based on sensing signals from the photo sensors; performing calibration on the original image by utilizing the calibration image; and detecting a fingerprint, based on the calibrated image. The calibration image is generated by synthetizing valid regions extracted from an original calibration image corresponding to the original image.
Abstract:
A display device comprises a display panel comprising an image display area and a non-display area, display pixels comprising light-emitting elements in the image display area and pixel driving units connected to the light-emitting elements, light-sensing pixels comprising photo-detecting units in a fingerprint sensing area in the image display area, and sense driving units connected to the photo-detecting units, a light-sensing reset driver configured to supply reset signals to the sense driving units of the light-sensing pixels for at least each horizontal line among the light-sensing pixels in response to a line select signal from a display driving circuit; and a fingerprint scan driver configured to sequentially supply a fingerprint scan signal to the sense driving units of the light-sensing pixels in response to a fingerprint scan control signal from the display driving circuit.