Abstract:
An organic light emitting device, and a manufacturing method of the same, in which in a light emitting layer, an electron trap material is introduced so as to improve a light emitting property and an operating characteristic and to prolong a life span.
Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, an emission layer disposed between the first electrode and the second electrode, and an electron-transporting layer disposed between the emission layer and the second electrode. The electron-transporting layer includes a first electron-transporting material and a second electron-transporting material. The lowest unoccupied molecular orbital (LUMO) energy level of the first electron-transporting material (EL1) and the lowest unoccupied molecular orbital (LUMO) energy level of the second electron-transporting material (EL2) satisfy the equation 0.1 eV≦|EL1−EL2|≦0.3 eV.
Abstract:
An organic light emitting diode (OLED) display includes a substrate, a thin film transistor formed on the substrate, a first electrode formed on the thin film transistor and electrically connected to the thin film transistor, a hole injection layer (HIL) formed on the first electrode, a hole transport layer (HTL) formed on the hole injection layer (HIL), an emission layer formed on the HTL, an electron transport layer (ETL) formed on the emission layer, a first buffer layer located on the ETL, and a second electrode formed on the first buffer layer.
Abstract:
Heterocyclic compounds, synthetic methods for preparing the same, and organic light-emitting display devices comprising the same are described. The subject heterocyclic compounds may comprise an aromatic ring or a heteroaromatic ring fused with a carbazole, dibenzothiophene, or dibenzofurane derivative, the compounds featuring rigid backbone structures with high glass transition temperatures and high melting points. The subject heterocyclic compounds may exhibit high electrical stability, improved charge transport ability, high heat resistance and improved light-emitting properties when used in organic light-emitting devices. Organic light-emitting display devices prepared according to the present invention exhibit lower driving voltages, increased luminescent efficiencies and longer lifetimes.
Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, an emission layer disposed between the first electrode and the second electrode, and an electron-transporting layer disposed between the emission layer and the second electrode. The electron-transporting layer includes a first electron-transporting material and a second electron-transporting material. The lowest unoccupied molecular orbital (LUMO) energy level of the first electron-transporting material (EL1) and the lowest unoccupied molecular orbital (LUMO) energy level of the second electron-transporting material (EL2) satisfy the equation 0.1 eV≦|EL1−EL2|≦0.3 eV.
Abstract:
Disclosed is an organic light emitting diode device including an anode, a cathode, an emission layer between the anode and the cathode, and a buffer layer positioned between the emission layer and the anode. The buffer layer includes an oxide, fluoride, quinolate, or acetoacetate compound of an alkaline metal or an alkaline-earth metal, as well as a material having a work function of about 2.6 to about 4.5 eV. The buffer layer also has a thickness of about 30 Å to about 400 Å.
Abstract:
An organic light emitting device, and a manufacturing method of the same, in which in a light emitting layer, an electron trap material is introduced so as to improve a light emitting property and an operating characteristic and to prolong a life span.