Abstract:
An organic light emitting device, and a manufacturing method of the same, in which in a light emitting layer, an electron trap material is introduced so as to improve a light emitting property and an operating characteristic and to prolong a life span.
Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, an emission layer disposed between the first electrode and the second electrode, and an electron-transporting layer disposed between the emission layer and the second electrode. The electron-transporting layer includes a first electron-transporting material and a second electron-transporting material. The lowest unoccupied molecular orbital (LUMO) energy level of the first electron-transporting material (EL1) and the lowest unoccupied molecular orbital (LUMO) energy level of the second electron-transporting material (EL2) satisfy the equation 0.1 eV≦|EL1−EL2|≦0.3 eV.
Abstract:
An organic light emitting diode (OLED) display includes a substrate, a thin film transistor formed on the substrate, a first electrode formed on the thin film transistor and electrically connected to the thin film transistor, a hole injection layer (HIL) formed on the first electrode, a hole transport layer (HTL) formed on the hole injection layer (HIL), an emission layer formed on the HTL, an electron transport layer (ETL) formed on the emission layer, a first buffer layer located on the ETL, and a second electrode formed on the first buffer layer.
Abstract:
An organic light emitting diode device includes a first electrode, a second electrode, an organic emission layer, an electron transport layer and a buffer layer. The second electrode is opposite to the first electrode. The organic emission layer is located between the first and second electrodes. The electron transport layer is located between the organic emission layer and the second electrode. The buffer layer is located between the organic emission layer and the electron transport layer, and is made of at least one material selected from a pyrene compound represented by the following Chemical Formula 1, an anthracene compound represented by the following Chemical Formula 2 and a combination thereof: Here, the definitions of R1, R2 and A are as described in the specification.
Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, an emission layer disposed between the first electrode and the second electrode, and an electron-transporting layer disposed between the emission layer and the second electrode. The electron-transporting layer includes a first electron-transporting material and a second electron-transporting material. The lowest unoccupied molecular orbital (LUMO) energy level of the first electron-transporting material (EL1) and the lowest unoccupied molecular orbital (LUMO) energy level of the second electron-transporting material (EL2) satisfy the equation 0.1 eV≦|EL1−EL2|≦0.3 eV.
Abstract:
Disclosed is an organic light emitting diode device including an anode, a cathode, an emission layer between the anode and the cathode, and a buffer layer positioned between the emission layer and the anode. The buffer layer includes an oxide, fluoride, quinolate, or acetoacetate compound of an alkaline metal or an alkaline-earth metal, as well as a material having a work function of about 2.6 to about 4.5 eV. The buffer layer also has a thickness of about 30 Å to about 400 Å.
Abstract:
Embodiments of the present invention are directed to a condensed-cyclic compound represented by Formula 1, and to an organic light-emitting diode including the same.