Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
A thin film transistor (TFT) circuit device comprises a substrate comprising a major surface; a gate line formed over the substrate and extending in a first direction when viewed in a viewing direction perpendicular to the major surface; an insulating layer formed over the gate line; an electrically conductive line formed over the insulating layer and extending in a second direction when viewed in the viewing direction, the second direction being different from the first direction, the electrically conductive line comprising a source line or a data line; and a semiconductor piece formed over the substrate. The semiconductor piece comprises a portion which is located between the substrate and the gate line and overlaps the gate line and the electrically conductive line at an intersection of the gate line and the electrically conductive line when viewed in the viewing direction.
Abstract:
Provided are a thin film transistor substrate which include a substrate, a buffer layer and a thin film transistor, a display apparatus including the thin film transistor substrate, and a method of manufacturing the display apparatus including the thin film transistor substrate. The buffer layer includes an inorganic insulating layer. An area ratio of a peak corresponding to an N—H bond in the buffer layer is 0.5% or less based on a total peak area in a Fourier transform infrared spectroscopy (FTIR).
Abstract:
Provided are a thin film transistor substrate which include a substrate, a buffer layer and a thin film transistor, a display apparatus including the thin film transistor substrate, and a method of manufacturing the display apparatus including the thin film transistor substrate. The buffer layer includes an inorganic insulating layer. An area ratio of a peak corresponding to an N—H bond in the buffer layer is 0.5% or less based on a total peak area in a Fourier transform infrared spectroscopy (FTIR).
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.
Abstract:
A display panel of an OLED display device includes a first OLED disposed in a first sub-pixel region, a second OLED disposed in a second sub-pixel region adjacent to the first sub-pixel region in a row direction, a third OLED disposed in a third sub-pixel region adjacent to the first sub-pixel region in a column direction, a fourth OLED disposed in a fourth sub-pixel region adjacent to the second sub-pixel region in the column direction and adjacent to the third sub-pixel region in the row direction, a first sub-pixel circuit disposed in the first sub-pixel region and a fourth sub-pixel circuit disposed in the fourth sub-pixel region, both configured to drive the first OLED, a second sub-pixel circuit disposed in the second sub-pixel region, and configured to drive the fourth OLED, a third sub-pixel circuit disposed in the third sub-pixel region, and configured to drive the third OLED.
Abstract:
Provided are a thin film transistor substrate which include a substrate, a buffer layer and a thin film transistor, a display apparatus including the thin film transistor substrate, and a method of manufacturing the display apparatus including the thin film transistor substrate. The buffer layer includes an inorganic insulating layer. An area ratio of a peak corresponding to an N—H bond in the buffer layer is 0.5% or less based on a total peak area in a Fourier transform infrared spectroscopy (FTIR).