Abstract:
A display device includes a first pixel including a first light emitter, a second pixel including a second light emitter, and a holding capacitor connected to the first and second pixels. The holding capacitor stores first data for the first light emitter and stores second data for the second light emitter at different times. An irradiation direction of first light emitted by the first OLED is substantially equal to an irradiation direction of second light emitted by the second OLED. The first light from the first OLED is emitted in a first frame period and the second light from the second OLED is emitted in a second frame period to prevent mixing of the first and second light.
Abstract:
A display device and a driving method thereof are disclosed, and the display device includes a first pixel connected to a first data line, a first scan line, and a first power source line, emitting light in a first period, and not emitting light in a second period following the first period; a second pixel connected to a second data line, the first scan line, and the first power source line, not emitting light in the first period, and emitting light in the second period; a current sensor sensing a current flowing through the first power source line in the first period to provide a first sensing current value, and sensing the current flowing through the first power source line in the second period to provide a second sensing current value; and a memory storing a first block target current value corresponding to the first sensing current value and a second block target current value corresponding to the second sensing current value.
Abstract:
A display device includes: a display panel including a plurality of pixels; a first flexible printed circuit board attached to the display panel and electrically connected thereto; a first printed circuit board attached to the first flexible printed circuit board and electrically connected thereto; a data driver which applies a data voltage to the plurality of pixels, receives a voltage flowing to the plurality of pixels and generates mobility sensing information based on the voltage flowing to the plurality of pixels; and a timing controller which detects a first misalignment between the first printed circuit board and the first flexible printed circuit board, and a second misalignment between the display panel and the first flexible printed circuit board, based on the mobility sensing information.
Abstract:
A display device includes: a display panel including a plurality of pixels; a first flexible printed circuit board attached to the display panel and electrically connected thereto; a first printed circuit board attached to the first flexible printed circuit board and electrically connected thereto; a data driver which applies a data voltage to the plurality of pixels, receives a voltage flowing to the plurality of pixels and generates mobility sensing information based on the voltage flowing to the plurality of pixels; and a timing controller which detects a first misalignment between the first printed circuit board and the first flexible printed circuit board, and a second misalignment between the display panel and the first flexible printed circuit board, based on the mobility sensing information.
Abstract:
A display device and a driving method thereof are disclosed, and the display device includes a first pixel connected to a first data line, a first scan line, and a first power source line, emitting light in a first period, and not emitting light in a second period following the first period; a second pixel connected to a second data line, the first scan line, and the first power source line, not emitting light in the first period, and emitting light in the second period; a current sensor sensing a current flowing through the first power source line in the first period to provide a first sensing current value, and sensing the current flowing through the first power source line in the second period to provide a second sensing current value; and a memory to storing a first block target current value corresponding to the first sensing current value and a second block target current value corresponding to the second sensing current value.
Abstract:
An organic light emitting display that defines a plurality of pixels arranged in a matrix form as a plurality of pixel row groups, each of which includes the same number of pixel rows and individually drives the respective pixel row groups. The organic light emitting display includes a display unit including the plurality of pixels, a plurality of data lines, and a plurality of scan lines: a scan driving unit configured to apply scan signals to the plurality of pixels; a data driving unit configured to apply data voltages that are provided to the plurality of pixels to a first output line; and a data distribution unit configured to selectively connect at least two data lines that are continuously arranged to the first output line according to demultiplexing signals. The demultiplexing signals that correspond to the pixel rows included in the respective pixel row groups have different pulse widths.