Abstract:
A method for manufacturing a display device including forming a lower electrode on a substrate; depositing a first insulation layer thereon; forming a semiconductor layer that overlaps the lower electrode thereon; depositing a second insulation layer thereon; forming a gate electrode and an etching prevention layer that overlap the semiconductor layer thereon; depositing a third insulation layer thereon; forming a first conductor that overlaps the gate electrode thereon; depositing a fourth insulation layer thereon; forming a photosensitive film patterns thereon by depositing a photosensitive film and exposing and developing the photosensitive film such that portions of the photosensitive film are removed in a first area, a second area, and a third area; etching the third insulation layer using the patterns as an etching mask; etching the etching prevention layer by using the patterns as an etching mask; and etching the first insulation layer using the patterns as an etching mask.
Abstract:
A display device including a pixel electrode, and a pixel circuit electrically connected to the pixel electrode. The pixel circuit includes a first transistor including sub-transistors electrically connected to each other through a first common node, a second transistor including sub-transistors electrically connected to each other through a second common node, a first electrode electrically connecting the first common node with the second common node, and a second electrode disposed to overlap the first electrode and electrically connected to a direct current power source.
Abstract:
A display apparatus includes: a base substrate; a thin film transistor and a power supply wire on the base substrate; a first electrode on the base substrate, and electrically connected to the thin film transistor; a light emitting layer and a common layer on the first electrode; and a second electrode on the common layer. The power supply wire includes: a first conductive layer; a second conductive layer on the first conductive layer; and a third conductive layer on the second conductive layer. The third conductive layer protrudes more than the second conductive layer on a side surface of the power supply wire, and the second electrode contacts a side surface of the second conductive layer.
Abstract:
An organic light emitting diode (OLED) display device including: a substrate; first, second and third thin film transistors sequentially laminated over the substrate; a pixel definition layer formed over the substrate and defining a pixel area; and first, second and third organic light emitting diode elements formed over the substrate, sequentially laminated in the pixel area, and respectively connected to the first, second and third thin film transistors.
Abstract:
Provided is a display device capable of preventing a liquid crystal from being left outside a microcavity. The display device includes: a substrate; a pixel electrode formed on the substrate; a roof layer formed on the pixel electrode so as to be spaced apart from the pixel electrode with a plurality of microcavities therebetween; a light blocking member positioned between two microcavities of the plurality of microcavities, overlapping with a first edge of one microcavity of the two microcavities, and not overlapping with a second edge of the other microcavity; an injection hole exposing a part of the microcavity; a liquid crystal layer filling the microcavity; and an encapsulation layer formed on the roof layer so as to cover the injection hole to seal the microcavity.
Abstract:
A display apparatus includes: a base substrate; a thin film transistor and a power supply wire on the base substrate; a first electrode on the base substrate, and electrically connected to the thin film transistor; a light emitting layer and a common layer on the first electrode; and a second electrode on the common layer. The power supply wire includes: a first conductive layer; a second conductive layer on the first conductive layer; and a third conductive layer on the second conductive layer. The third conductive layer protrudes more than the second conductive layer on a side surface of the power supply wire, and the second electrode contacts a side surface of the second conductive layer.
Abstract:
A display device and method of fabricating the same are provided. The display device includes a substrate and a thin-film transistor formed on the substrate. The thin-film transistor includes a lower gate conductive layer disposed on the substrate, and a lower gate insulating film disposed on the lower gate conductive layer The lower gate insulating film includes an upper surface and sidewalls. The thin-film transistor includes an active layer disposed on the upper surface of the lower gate insulating film, the active layer including sidewalls. At least one of the sidewalls of the lower gate insulating film and at least one of the sidewalls of the active layer are aligned with each other.
Abstract:
A display device and method of fabricating the same are provided. The display device includes a substrate and a thin-film transistor formed on the substrate. The thin-film transistor includes a lower gate conductive layer disposed on the substrate, and a lower gate insulating film disposed on the lower gate conductive layer The lower gate insulating film includes an upper surface and sidewalls. The thin-film transistor includes an active layer disposed on the upper surface of the lower gate insulating film, the active layer including sidewalls. At least one of the sidewalls of the lower gate insulating film and at least one of the sidewalls of the active layer are aligned with each other.
Abstract:
A display device includes a first transistor including a first active layer, a first gate electrode overlapping the first active layer, a gate insulating layer between the first active layer and the first gate electrode, a first source electrode, and a first drain electrode; a second transistor including a second active layer, a second gate electrode overlapping the second active layer, a second source electrode and a second drain electrode; a capacitor including a first capacitor electrode connected to the second transistor; a lower electrode disposed under the first active layer; a connecting member connecting the first active layer to the lower electrode; and a first metal pattern contacting the connecting member and disposed on a same layer with the first gate electrode.
Abstract:
A display device includes a first transistor including a first active layer, a first gate electrode overlapping the first active layer, a gate insulating layer between the first active layer and the first gate electrode, a first source electrode, and a first drain electrode; a second transistor including a second active layer, a second gate electrode overlapping the second active layer, a second source electrode and a second drain electrode; a capacitor including a first capacitor electrode connected to the second transistor; a lower electrode disposed under the first active layer; a connecting member connecting the first active layer to the lower electrode; and a first metal pattern contacting the connecting member and disposed on a same layer with the first gate electrode.