Abstract:
A cell cutting device that cuts a mother substrate for display devices includes a fixing unit configured to move in a state where the mother substrate for display devices is fixed on the fixing unit, a cutter configured to perform a cutting process on the mother substrate for display devices and the cutter faces a surface of the mother substrate during the cutting process, a cutter driving unit driving the cutter in a state where the cutter is fixed thereon, and a buffer member arranged on another surface of the mother substrate to correspond to the cutter. The other surface is opposite the surface facing the cutter.
Abstract:
A quantum-nano light emitting diode (Q-NED) pixel includes a switching transistor configured to transfer a data voltage in response to a scan signal, a storage capacitor configured to store the data voltage transferred by the switching transistor, a driving transistor coupled to a first power supply voltage line, and configured to generate a driving current based on the data voltage stored in the storage capacitor, a plurality of Q-NEDs configured to emit light based on the driving current, the Q-NEDs having an ohmic contact resistance at anodes and cathodes of the Q-NEDs, a first sensing transistor configured to couple the Q-NEDs to a sensing line in response to a sensing signal when a sensing operation for sensing the ohmic contact resistance of the Q-NEDs is performed, and a second sensing transistor configured to decouple the Q-NEDs from a second power supply line in response to an inverted sensing signal.
Abstract:
In a polarizing liquid crystal panel and a display apparatus including the polarizing liquid crystal panel, the polarizing liquid crystal panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a plastic substrate, a first electrode on the plastic substrate, and a first alignment layer on the first electrode. The second substrate includes a base substrate which opposes the first substrate, a second electrode on the base substrate, and a second alignment layer on the second electrode. The liquid crystal layer is between the first and second substrates and polarizes a light using an electric field between the first and second electrodes.
Abstract:
A method of driving a crack detector of an organic light emitting display device according to example embodiments includes: determining an image load of a display panel with respect to image data corresponding to an emission period of the organic light emitting display device when it is driven according to a simultaneous emission driving method, calculating a first sensing value corresponding to a power current that flows into a power supply during the emission period, determining a first crack reference value based on the image load, and determining whether the display panel is cracked by comparing the first crack reference value with the first sensing value.
Abstract:
A foldable display device according to example embodiments includes a flexible display panel including a first display area having at least partially foldable area and a second display area not having the foldable area, a folding sensor in the first display area configured to detect a folding status of the flexible display panel and output a detecting signal which includes the folding status of the flexible display panel, a scan driver configured to sequentially provide scan signals to at least a part of a plurality of scan lines based on the detecting signal, a data driver configured to provide data signals to the flexible display panel based on the detecting signal, and a timing controller configured to convert input image data into corrected image data based on the detecting signal and control the scan driver and the data driver.