Abstract:
A light-emitting display device, including a substrate including a plurality of pixels; a first electrode on the substrate in each of the pixels; a pixel defining layer on the substrate, the pixel defining layer having an opening exposing the first electrode and including a side surface having a first part, a second part located on the first part, and a boundary part located between the first part and the second part; a lyophobic pattern in the boundary part of the side surface of the pixel defining layer in the opening of the pixel defining layer; an organic layer on the first electrode, the organic layer including a light-emitting layer under the lyophobic pattern in the opening of the pixel defining layer; and a second electrode on the organic layer.
Abstract:
The light emitting display device comprises: a substrate including a plurality of pixels that are arranged in a first direction and a second direction that crosses the first direction; a first electrode for each pixel on the substrate; a pixel defining layer on the substrate, the pixel defining layer having an opening for exposing the first electrode; a hole injection layer on the first electrode; a lyophilic pattern extending on the hole injection layer to cover the first electrode and the pixel defining layer that are on a same line in the first direction, and extending up to an outer region of outermost pixels of the plurality of pixels in the first direction; a hole transport layer on the lyophilic pattern; a light emitting layer on the hole transport layer; and a second electrode on the light emitting layer, wherein the lyophilic pattern includes a first lyophilic pattern having a plurality of grooves on one end portion thereof in the first direction and a second lyophilic pattern having a plurality of grooves on another end portion thereof in the first direction, and wherein the first lyophilic pattern and the second lyophilic pattern are alternately arranged in the second direction.
Abstract:
A light-emitting display device includes a pixel defining layer with an opening that exposes a first electrode, a hole injection layer on the first electrode, a lyophilic pattern on the hole injection layer in the opening, a hole transport layer on the lyophilic pattern, a light-emitting layer on the hole transport layer, and a second electrode on the light-emitting layer. The lyophilic pattern includes a first part adjacent to a first sidewall of the opening and a second part adjacent to a second sidewall of the opening. A distance from a top surface of the hole injection layer to an edge of a top surface of the second part corresponds to a first height. A distance from the top surface of the hole injection layer to a top surface of the first part corresponds to a second height. The first height is lower than the second height.
Abstract:
A display device includes an organic layer, a first electrode and a second electrode disposed on the organic layer and spaced apart from each other, a first insulating layer disposed on the first electrode and the second electrode, and first light emitting elements disposed on the first insulating layer and disposed between the first electrode and the second electrode. An opening is formed by passing through at least one of the first electrode and the second electrode and the first insulating layer and exposes the organic layer.
Abstract:
A light-emitting display device includes a pixel defining layer with an opening that exposes a first electrode, a hole injection layer on the first electrode, a lyophilic pattern on the hole injection layer in the opening, a hole transport layer on the lyophilic pattern, a light-emitting layer on the hole transport layer, and a second electrode on the light-emitting layer. The lyophilic pattern includes a first part adjacent to a first sidewall of the opening and a second part adjacent to a second sidewall of the opening. A distance from a top surface of the hole injection layer to an edge of a top surface of the second part corresponds to a first height. A distance from the top surface of the hole injection layer to a top surface of the first part corresponds to a second height. The first height is lower than the second height.
Abstract:
A light-emitting display device includes a substrate having a plurality of pixels. A first electrode is provided on the substrate for each pixel, and a pixel defining layer defines each of the pixels. The pixel defining layer has an opening to expose the first electrode. A charge injection layer is on the first electrode, and a surface processing layer is on the charge injection layer. The surface processing layer extends from inside the opening of the pixel defining layer to a top surface of the pixel defining layer. The surface processing layer including a plurality of grooves in a portion extending on the top surface of the pixel defining layer. A charge transport layer is on the surface processing layer, a light-emitting layer is on the charge transport layer, and a second electrode is on the light-emitting layer.
Abstract:
A display device comprises a light emitting area and a sub-area spaced apart from each other a first electrode and a second electrode disposed on a substrate and spaced apart from each other, a first insulating layer disposed on the first electrode and the second electrode, a bank layer disposed on the first insulating layer and disposed between the light emitting area and the sub-area, light emitting elements disposed on the first electrode and the second electrode, a first connection electrode electrically connected to an end of the light emitting element and a second connection electrode connected to another end of the light emitting element, and auxiliary electrodes disposed between the substrate and the bank layer and spaced apart from each other with the light emitting area and the sub-area disposed between the auxiliary electrodes.
Abstract:
A display device includes a plurality of pixels, a first bank defining light emission regions of the plurality of pixels, a first electrode and a second electrode which are spaced apart from each other in each of the light emission regions, and a plurality of light emitting elements disposed between the first electrode and the second electrode. The first bank, the first electrode, and the second electrode include a same material.
Abstract:
An organic light-emitting display panel and a method of fabricating the same, the panel including a base substrate; a first electrode layer including a plurality of first electrodes arranged on the base substrate; a pixel-defining layer including partition walls that extend from the base substrate and that define a plurality of pixels; an organic light-emitting layer including a plurality of organic light-emitting patterns in the pixels, respectively; and a second electrode layer on the organic light-emitting layer, wherein the organic light-emitting layer includes a plurality of primer patterns, the plurality of primer patterns being respectively formed in the pixels, being separate from one another, and respectively overlapping the first electrodes, at least one of the primer patterns has an area different area from an area of the other primer patterns, and the primer patterns have an affinity for liquid that is higher than an affinity for liquid of the pixel-defining layer.
Abstract:
A light-emitting display device includes a substrate having a plurality of pixels. A first electrode is provided on the substrate for each pixel, and a pixel defining layer defines each of the pixels. The pixel defining layer has an opening to expose the first electrode. A charge injection layer is on the first electrode, and a surface processing layer is on the charge injection layer. The surface processing layer extends from inside the opening of the pixel defining layer to a top surface of the pixel defining layer. The surface processing layer including a plurality of grooves in a portion extending on the top surface of the pixel defining layer. A charge transport layer is on the surface processing layer, a light-emitting layer is on the charge transport layer, and a second electrode is on the light-emitting layer.