Abstract:
A method of operating an electronic device includes displaying a first image, extracting a user-interested region from a region including the first image, and displaying a bioeffect image at the user-interested region. The first image and bioeffect image are different images.
Abstract:
A display device may include a pixel and a light shutter. The pixel may include a first region and a second region. The light shutter may be disposed in the second region. The light shutter may include a first electrode, a heat generation layer disposed on the first electrode, and a phase change layer disposed on the heat generation layer. The phase change layer may include a phase change material of which optical property is changed depending on temperature.
Abstract:
A method of manufacturing an optical sheet includes providing a first stacked structure comprising a plurality of first light shielding layers and a plurality of color filter layers which are alternately stacked, and cutting the first stacked structure to form a plurality of optical films. Each optical film includes first and second cut faces, the second cut face being parallel to the first cut face, each optical film comprising a plurality of light shielding layer sections and a plurality of color filter layer sections extending in a first direction. The method further includes forming a second stacked structure comprising a plurality of second light shielding layers and the plurality of optical films which are alternately stacked; and cutting the second stacked structure to form an optical sheet which comprises third and fourth cut faces, the fourth cut face being parallel to the third cut face.
Abstract:
A thin film transistor substrate includes a data line, a gate line, a gate electrode, a source electrode, a first drain electrode, a semiconductor layer and a second drain electrode. The data line and the gate line cross each other on a base substrate. The gate electrode is electrically connected to the gate line. The source electrode is electrically connected to the data line. The first drain electrode and the source electrode face each other. The semiconductor layer serves as a channel between the source electrode and the first drain electrode. The second drain electrode is disposed on the first drain electrode. The second drain electrode is electrically connected to the first drain electrode.
Abstract:
A method of display an image and a display device for performing the same are disclosed. In one aspect, the method includes receiving image data for a content image, determining a modulation region and a peripheral region in the content image and generating a left-eye content image and a right-eye content image based on the image data for the content image such that the modulation region has a three-dimensional depth. The method further includes displaying the left-eye content image and the right-eye content image and periodically changing the three-dimensional depth of the modulation region by changing a modulation distance between the modulation region in the left-eye content image and the modulation region in the right-eye content image based at least in part on a periodic modulation reference timing.
Abstract:
A thin film transistor substrate includes a data line, a gate line, a gate electrode, a source electrode, a first drain electrode, a semiconductor layer and a second drain electrode. The data line and the gate line cross each other on a base substrate. The gate electrode is electrically connected to the gate line. The source electrode is electrically connected to the data line. The first drain electrode and the source electrode face each other. The semiconductor layer serves as a channel between the source electrode and the first drain electrode. The second drain electrode is disposed on the first drain electrode. The second drain electrode is electrically connected to the first drain electrode.