Abstract:
A display panel including a plurality of pixels. A first pixel among the plurality of pixels includes a first subpixel, which further includes a first subpixel electrode, a first switching element configured to apply a data voltage to the first subpixel electrode, and a second switching element applying a boosting voltage to the first subpixel electrode. The first pixel further includes a second subpixel including a second subpixel electrode and a third switching element applying the data voltage to the low pixel electrode. Accordingly, display quality and reliability of the display panel may be improved.
Abstract:
A liquid crystal display including: a first substrate including a pixel area including a first subpixel area and a second subpixel area; a first subpixel electrode positioned in the first subpixel area and a second subpixel electrode positioned in the second subpixel area; an insulating layer formed on the first and second subpixel electrodes; a third subpixel electrode positioned in the first subpixel area and overlapping the first subpixel electrode; a fourth subpixel electrode positioned in the second subpixel area and overlapping the second subpixel electrode; a second substrate facing the first substrate; and a liquid crystal layer interposed between the first substrate and the second substrate. The first and fourth subpixel electrodes are connected to a first thin film transistor, and the second and third subpixel electrodes are connected to a second thin film transistor.
Abstract:
A method of driving a display panel includes providing a boosting voltage line on the display panel with a boosting voltage, compensating the boosting voltage based on a feedback boosting voltage received from the display panel, and providing the boosting voltage line on the display panel with the compensated boosting voltage. The display panel includes a first sub pixel. The first sub pixel includes a first switching element and a first boosting switching element, the first switching element is connected to a first liquid crystal (LC) capacitor, a gate line, an m-th data line and a first electrode of the first LC capacitor, and the first boosting switching element is connected to the boosted voltage line, and ‘m’ is a natural number.
Abstract:
A liquid crystal display including: a first substrate including a pixel area including a first subpixel area and a second subpixel area; a first subpixel electrode positioned in the first subpixel area and a second subpixel electrode positioned in the second subpixel area; an insulating layer formed on the first and second subpixel electrodes; a third subpixel electrode positioned in the first subpixel area and overlapping the first subpixel electrode; a fourth subpixel electrode positioned in the second subpixel area and overlapping the second subpixel electrode; a second substrate facing the first substrate; and a liquid crystal layer interposed between the first substrate and the second substrate. The first and fourth subpixel electrodes are connected to a first thin film transistor, and the second and third subpixel electrodes are connected to a second thin film transistor.
Abstract:
A method of driving a display panel includes providing a boosting voltage line on the display panel with a boosting voltage, compensating the boosting voltage based on a feedback boosting voltage received from the display panel, and providing the boosting voltage line on the display panel with the compensated boosting voltage. The display panel includes a first sub pixel. The first sub pixel includes a first switching element and a first boosting switching element, the first switching element is connected to a first liquid crystal (LC) capacitor, a gate line, an m-th data line and a first electrode of the first LC capacitor, and the first boosting switching element is connected to the boosted voltage line, and ‘m’ is a natural number.