Abstract:
A camera module includes a housing, a lens holder configured to move in the housing in an optical axis direction, and a lens barrel coupled to the lens holder, wherein the lens holder includes a first support structure extending from one side surface in the optical axis direction and a second support structure located on a side surface opposite to the first support structure and extending in the optical axis direction, and the first support structure includes an extension protruding beyond the second support structure in the optical axis direction.
Abstract:
A camera module includes a housing accommodating a lens module, a driving unit including a magnet disposed on the lens module and a coil disposed to face the magnet, a yoke generating attractive force with the magnet, a first ball member accommodated in a first receiving space disposed between the lens module and the housing, and pressed by the attractive force, and a second ball member accommodated in a second receiving space disposed between the lens module and the housing, and pressed by the attractive force. A length of the first receiving space in an optical axis direction is different from a length of the second receiving space in the optical axis direction.
Abstract:
A camera module includes a housing, and a reflective module changing a direction of light incident on the housing. The reflective module includes a first reflective member having a reflective surface, a holder fixedly coupled to the first reflective member, a first magnetic member mounted on the holder, and a second magnetic member mounted in the housing, facing the first reflective member, and spaced apart from the first magnetic member.
Abstract:
A camera module includes a housing accommodating a lens module, a driving unit including a magnet disposed on the lens module and a coil disposed to face the magnet, a yoke generating attractive force with the magnet, a first ball member accommodated in a first receiving space disposed between the lens module and the housing, and pressed by the attractive force, and a second ball member accommodated in a second receiving space disposed between the lens module and the housing, and pressed by the attractive force. A length of the first receiving space in an optical axis direction is different from a length of the second receiving space in the optical axis direction.
Abstract:
A hydrodynamic bearing device includes a stator and a rotor. The rotor forms a bearing clearance and a sealing part connected with the bearing clearance. A liquid-vapor interface is disposed in the sealing part together with the stator, and the bearing clearance is filled with a lubricating fluid. The stator and the rotor form a storage space connected with the sealing part to receive the lubricating fluid. The storage space has a region in which force applied to the liquid-vapor interface increases by a capillary phenomenon at a time that the lubricating fluid leaks to fill the bearing clearance.
Abstract:
A camera module includes a housing accommodating a lens module, a driving unit including a magnet disposed on the lens module and a coil disposed to face the magnet, a yoke generating attractive force with the magnet, a first ball member accommodated in a first receiving space disposed between the lens module and the housing, and pressed by the attractive force, and a second ball member accommodated in a second receiving space disposed between the lens module and the housing, and pressed by the attractive force. A length of the first receiving space in an optical axis direction is different from a length of the second receiving space in the optical axis direction.
Abstract:
A camera module includes a carrier configured to move in an optical axis direction, a frame and a lens holder disposed in the carrier in the optical axis direction and configured to move together with the carrier in the optical axis direction, a first ball member disposed between the carrier and the frame, a second ball member disposed between the frame and the lens holder, and a third ball member disposed between the carrier and the lens holder. The frame and the lens holder are configured to move together in a first axis direction perpendicular to the optical axis direction. The lens holder is configured to move relatively with respect to the frame in a second axis direction perpendicular to the first axis direction, and the third ball member has more contact points with the carrier than the first ball member.
Abstract:
A camera module includes a housing accommodating a lens module, a driving unit including a magnet disposed on the lens module and a coil disposed to face the magnet, a yoke generating attractive force with the magnet, a first ball member accommodated in a first receiving space disposed between the lens module and the housing, and pressed by the attractive force, and a second ball member accommodated in a second receiving space disposed between the lens module and the housing, and pressed by the attractive force. A length of the first receiving space in an optical axis direction is different from a length of the second receiving space in the optical axis direction.
Abstract:
A camera module includes a housing having an internal space, a printed circuit board disposed in the housing, and a reflective module disposed in the internal space of the housing and comprising a reflective member configured to change a path of incident light, and a reflective holder supporting the reflective member; and a noise prevention unit disposed on either the housing or the printed circuit board and configured to prevent the reflective holder from contacting the housing.
Abstract:
A camera module having a case coupled to a base part to form an internal space; a lens module disposed in the internal space; and an auto-focusing driving part comprising a first magnet attached to one surface of the lens module and a first coil disposed to face the first magnet, wherein the base part has a first board on which an image sensor is disposed, and a fixing part on one side portion of the base part and extending from the base part in an optical axis direction, and wherein other side portions of the base part exclude the fixing part.