Abstract:
An organic semiconductor polymer includes a moiety represented by the following Chemical Formula 1 and a heteroaromatic moiety having at least one of sulfur (S) and selenium (Se). In the Chemical Formula 1, R1, R2, R3a, R3b, R4a, R4b, R5a, and R5b, a1, a2, b1, and b2 are the same as described in the detailed description.
Abstract:
A display device according to example embodiments includes a first thin film transistor on a substrate, a second thin film transistor on the first thin film transistor, and a display unit electrically connected to at least one of the first thin film transistor and the second thin film transistor.
Abstract:
A thin film transistor panel includes a gate electrode on a substrate, a gate insulating layer on the gate electrode, an organic semiconductor overlapping with the gate electrode, a source electrode and a drain electrode electrically connected to the organic semiconductor, a fluorine-containing organic insulation layer covering the organic semiconductor, and a photosensitive organic insulation layer covering the fluorine-containing organic insulation layer.
Abstract:
Disclosed is a method for forming banks during the fabrication of electronic devices incorporating an organic semiconductor material that includes preparing an aqueous coating composition having at least a water-soluble polymer, a UV curing agent and a water-soluble fluorine compound. This coating composition is applied to a substrate, exposed using UV radiation and then developed using an aqueous developing composition to form the bank pattern. Because the coating composition can be developed using an aqueous composition rather than an organic solvent or solvent system, the method tends to preserve the integrity of other organic structures present on the substrate. Further, the incorporation of the fluorine compound in the aqueous solution provides a degree of control over the contact angles exhibited on the surface of the bank pattern and thereby can avoid or reduce subsequent surface treatments.