Abstract:
A tomography apparatus includes a data obtainer configured to obtain first image data at a first point and second image data at a second point using tomography, the tomography being performed by irradiating an X-ray to an object; an image processor configured to perform noise reduction based on at least one from among the first image data and the second image data, and to obtain a first reference image corresponding to the first image data and a second reference image corresponding to the second image data using a result of the performed noise reduction; and an image reconstructor configured to reconstruct a target image representing the object based on the first reference image and the second reference image.
Abstract:
A pressure sensor and a pressure sensing method are provided. The pressure sensor includes a substrate; a sensor thin film transistor (TFT) disposed on the substrate and including a gate insulating layer, wherein the gate insulating layer includes an organic matrix in which piezoelectric inorganic nano-particles are dispersed; a power unit configured to apply an alternating current (AC) signal to a gate of the sensor TFT; and a pressure sensing unit configured to obtain a remnant polarization value based on a drain current which is generated in response to the AC signal and detected by the sensor TFT, and to sense a pressure based on the remnant polarization value.
Abstract:
A method of controlling an X-ray in a computed tomography (CT) apparatus includes: acquiring scout images of an object; setting an imaging region of the object in the acquired scout images; determining an outline of transverse axes lengths of the imaging region based on the transverse axes lengths of the imaging region; controlling X-rays emitted toward the object by adjusting a distance between elements of a transverse collimator of the CT apparatus according to the determined outline; and reconstructing a cross-sectional X-ray image of the object based on X-ray projection data generated by detecting the controlled X-rays.
Abstract:
Provided is a tomography apparatus including: a data acquisitor configured to obtain a first image by using tomography data acquired as a first X-ray generator for generating X-rays having a first energy rotates around an object over a first angular range and obtain a second image by using tomography data acquired as a second X-ray generator for generating X-rays having a second energy rotates around the object over a second angular range; a controller configured to acquire motion information representing an amount of motion of the object over time by using the first and second images; and an image reconstructor configured to reconstruct a target image showing the object at a target time point by using the motion information.
Abstract:
A tomographic imaging apparatus includes an X-ray detector comprising a plurality of dual mode pixels and configured to detect radiation that has passed through an object, and at least one processor configured to obtain scan data from the X-ray detector, and control each pixel of the plurality of dual mode pixels to operate in one of a first mode and a second mode, wherein each pixel of the plurality of dual mode pixels includes a sensor configured to generate a scan signal by converting incident radiation into an electric signal, a first signal path circuit configured to transmit the scan signal in the first mode, a second signal path circuit configured to transmit the scan signal in the second mode, and a photon counter configured to count photons from the scan signal transmitted through one of the first and second signal path circuits.