INTEGRATED CANTILEVER SWITCH
    6.
    发明申请

    公开(公告)号:US20180182902A1

    公开(公告)日:2018-06-28

    申请号:US15892028

    申请日:2018-02-08

    摘要: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    Acceleration sensor and mounting structure of acceleration sensor

    公开(公告)号:US09972724B2

    公开(公告)日:2018-05-15

    申请号:US15536716

    申请日:2016-01-07

    申请人: DENSO CORPORATION

    发明人: Kiyomasa Sugimoto

    摘要: An acceleration sensor includes: a semiconductor substrate that includes a support substrate and a semiconductor layer; a first-direction movable electrode; a second-direction movable electrode; a first-direction fixed electrode; a second-direction fixed electrode; and a support member. The acceleration sensor is configured to detect acceleration in a first direction in the surface direction of the semiconductor substrate and acceleration in a second direction orthogonal to the first direction and parallel to the surface direction. The first-direction movable electrode and the first-direction fixed electrode are provided such that an angle formed by an extended direction of the first-direction movable electrode and the first-direction fixed electrode and the second direction is sin−1(d/L)[deg], and the second-direction movable electrode and the second-direction fixed electrode are provided such that an angle formed by an extended direction of the second-direction movable electrode and the second-direction fixed electrode and the first direction is sin−1(d/L)[deg].