Abstract:
According to an example embodiment, a battery system includes: a plurality of modules, each including a plurality of cells connected to each other in series and a cell balancing circuit performing a balancing operation between the plurality of the cells based on voltages of the plurality of the cells; and a module balancing circuit performing a balancing operation between the modules based on voltages of the modules.
Abstract:
An apparatus for performing balancing on cells connected in series and included in a module may comprise a first switching unit including first cell selection switches respectively connected to the cells, and configured to connect a first cell to be balanced to a balancing unit; a second switching unit including second cell selection switches respectively connected to the cells, and configured to connect a second cell to be balanced to the balancing unit; a controller configured to measure voltages of each cell, and controlling operations of the first switching unit, the second switching unit, and the balancing unit based on information on the first and second cells, wherein the first and second cells are selected by the controller using the measured voltages; and/or the balancing unit, connected to the first and second switching units, and configured to perform balancing between the first and second cells selected by the controller.
Abstract:
According to example embodiments, a method of driving a power switch device includes applying a first voltage to a gate electrode of the power switch device, and applying a drive voltage to the gate electrode of the power switch device after applying the first voltage to the gate electrode of the power switch device. The first voltage is higher than the drive voltage of the power switch device in a turn-on state.
Abstract:
According to an example embodiment, a balancing apparatus includes: bi-directional switches that are respectively connected to cells that are connected in series, a controller configured to measure voltages of the cells, and a multiwinding transformed connected to the bi-directional switches. The bi-directional switches are configured to control a flow of an electric current bi-directionally. The controller is configured to select a number of the cells for balancing based on the measured voltages of the cells. The controller is configured to turn on and turn off the bi-directional switches that are connected to selected cells based on the measured voltages. The multi-winding transformer is configured to transfer energy between the cells when the bi-directional switches connected to the selected cells are turned on.
Abstract:
An air purifier is provided. The air purifier includes a plurality of filters, a driving unit configured to individually move the plurality of filters, and a processor configured to control the driving unit so that at least one of the plurality of filters is disposed in an air passage in the air purifier according to an air state.
Abstract:
An electronic device is disclosed. The electronic device comprises: a gas sensor having different sensitivities in temperature for each of a plurality of gases; and a processor for calculating a concentration of at least one of a plurality of gases on the basis of an output value of the gas sensor for different temperature sections.
Abstract:
An electronic apparatus is provided. The electronic apparatus according to an embodiment includes a plurality of different types of gas sensors configured to output sensing values based on sensing a gas, and a processor configured to determine a gas type corresponding to a plurality of sensing values respectively output from the plurality of different types of gas sensors.
Abstract:
A portable device having an exhalation sensing function is provided. The portable device includes a gas detector that analyzes exhalation, and a device main body including a receiving portion in which the gas detector is received, the device main body having a call function, wherein, when a user makes a call using the device main body, the gas detector is automatically projected from the receiving portion of the device main body, and senses the user's exhalation.