Abstract:
A compatible optical pickup for recording and/or reproducing information on/from multiple kinds of optical discs having different thicknesses by selectively using source lights of respective different wavelengths corresponding to a kind of disc and using a common objective lens. At least one phase compensator, which compensates a phase of a light having a particular wavelength to correct for spherical aberration due to a thickness difference between the kinds of optical discs and/or chromatic aberration due to a wavelength difference between the required source lights, is positioned between the source lights and an entrance pupil of the objective lens. Each phase compensator compensates light of at least one wavelength and passes light of at least one other wavelength without significant relative phase alteration. By using two phase compensators, the optical pickup may be made compatible with at least three kinds of optical discs.
Abstract:
An optical head includes a substrate, a laser diode, a photodetector, an objective lens, a prism, and an optical element. The laser diode is installed on the substrate and emits light. The photodetector is installed on the substrate and receives the light. The objective lens is installed on a first side of the substrate and focuses the light emitted from the laser diode onto a recording surface of a disc. The prism is installed on a second side of the substrate, transmits the light emitted from the laser diode toward the objective lens, and transmits the light reflected from the recording surface toward the photodetector. The optical element adjusts an optical path formed between the substrate and the prism.
Abstract:
A compatible optical pickup includes an optical disc, an objective lens, a diffractive device, and a divergent lens. The optical unit emits a short wavelength light beam corresponding to a high density optical disc and a long wavelength light beam corresponding to a low density optical disc. The objective lens forms a light spot on the high density optical disc and the low density optical disc and the diffractive device diffracts the short wavelength light beam to correct chromatism according to a change in a wavelength of the short wavelength light beam. The divergent lens refracts the long wavelength light beam toward the objective lens to increase a working distance with respect to the low density optical disc.
Abstract:
An optical disc apparatus and a wobble signal detection method in which a light beam projected onto an optical disc and reflected by the optical disc is divided into at least four light regions in the direction corresponding to the radial direction of the optical disc to detect the light regions, and a wobble signal is detected by performing a subtraction on first and second difference signals, the first difference signal obtained by performing a subtraction on detection signals for the inner light regions of the divided and/or detected light beam and the second difference signal obtained by performing a subtraction on detection signals for the outer light regions of the divided and/or detected light beam. Accordingly, when a wobble signal is reproduced from an optical disc manufactured by a wobble modulation manner, a wobble signal is prevented from being degraded due to the interference (cross talk) from the wobbles of adjacent tracks, even though the track pitch of the optical disc is reduced to improve the recording density.